微波辐射下磁磺化树脂酸-热耦合降解泰乐素的研究

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Caitiao Fang , Wei Zhang , Chunmei Wang , Shiling Li , Xiaomin Dou , Jun Liu
{"title":"微波辐射下磁磺化树脂酸-热耦合降解泰乐素的研究","authors":"Caitiao Fang ,&nbsp;Wei Zhang ,&nbsp;Chunmei Wang ,&nbsp;Shiling Li ,&nbsp;Xiaomin Dou ,&nbsp;Jun Liu","doi":"10.1016/j.jes.2024.10.036","DOIUrl":null,"url":null,"abstract":"<div><div>Acidic- and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes. Elevating temperature can accelerate hydrolytic kinetics and improve efficiency. In this work, magnetic sulfonated polypropylene resin (Fe<sub>3</sub>O<sub>4</sub>@PS-S) composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group, the dielectric effect of resin, and the magnetic-loss effect of magnetite under microwave irradiation. As observed, a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts. Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites, and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects. Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat. The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated, which indicated that a synergic effect of microwave thermal- and acidic-hydrolyses contributed to the efficient mitigation of tylosin. The transformation products were identified and the pathways were supposed. Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction. The acute toxicity of tylosin and transformation products to fish, daphnia, and green algae were all classified as non-toxic. This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"155 ","pages":"Pages 127-138"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation\",\"authors\":\"Caitiao Fang ,&nbsp;Wei Zhang ,&nbsp;Chunmei Wang ,&nbsp;Shiling Li ,&nbsp;Xiaomin Dou ,&nbsp;Jun Liu\",\"doi\":\"10.1016/j.jes.2024.10.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acidic- and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes. Elevating temperature can accelerate hydrolytic kinetics and improve efficiency. In this work, magnetic sulfonated polypropylene resin (Fe<sub>3</sub>O<sub>4</sub>@PS-S) composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group, the dielectric effect of resin, and the magnetic-loss effect of magnetite under microwave irradiation. As observed, a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts. Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites, and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects. Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat. The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated, which indicated that a synergic effect of microwave thermal- and acidic-hydrolyses contributed to the efficient mitigation of tylosin. The transformation products were identified and the pathways were supposed. Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction. The acute toxicity of tylosin and transformation products to fish, daphnia, and green algae were all classified as non-toxic. This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.</div></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"155 \",\"pages\":\"Pages 127-138\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224005321\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005321","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

与高级氧化工艺相比,酸性和碱性水解在破坏生产废水中的功能键和脱落抗生素的药理部分方面具有选择性。升高温度可以加速水解动力学,提高水解效率。本文报道了磁性磺化聚丙烯树脂(Fe3O4@PS-S)复合材料利用磺酸基的酸性特性、树脂的介电效应和磁铁矿在微波照射下的磁损耗效应,对泰络素进行酸热水解。结果表明,该催化剂可在15分钟内快速完全缓解100 mg/L的泰络菌素。复合材料中的磺酸基实现了酪氨酸的酸性解理,微波热由于介电和磁损耗效应加速了水解反应。通过电磁分析区分介电效应和磁损耗效应,表明后者对微波能量转化为热能的贡献更大。使用Behnajady模型对多种操作条件下的相互作用进行了定量拟合,并进行了可视化演示,这表明微波热水解和酸水解的协同效应有助于有效缓解泰络菌素。对转化产物进行了识别,并对转化途径进行了假设。切割脱氧氨基糖基团和破坏内酯结构导致抗菌潜力降低和毒性降低。泰络菌素及其转化产物对鱼类、水蚤和绿藻的急性毒性均为无毒。研究表明,酸-热协同水解法在泰络菌素生产废水的预处理中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation

Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation
Acidic- and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes. Elevating temperature can accelerate hydrolytic kinetics and improve efficiency. In this work, magnetic sulfonated polypropylene resin (Fe3O4@PS-S) composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group, the dielectric effect of resin, and the magnetic-loss effect of magnetite under microwave irradiation. As observed, a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts. Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites, and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects. Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat. The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated, which indicated that a synergic effect of microwave thermal- and acidic-hydrolyses contributed to the efficient mitigation of tylosin. The transformation products were identified and the pathways were supposed. Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction. The acute toxicity of tylosin and transformation products to fish, daphnia, and green algae were all classified as non-toxic. This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信