利用IL分子特征评价IL/ZIF-8复合材料的CO2分离性能

Hasan Can Gulbalkan , Alper Uzun , Seda Keskin
{"title":"利用IL分子特征评价IL/ZIF-8复合材料的CO2分离性能","authors":"Hasan Can Gulbalkan ,&nbsp;Alper Uzun ,&nbsp;Seda Keskin","doi":"10.1016/j.ccst.2025.100373","DOIUrl":null,"url":null,"abstract":"<div><div>Given the vast number and diversity of metal-organic frameworks (MOFs) and ionic liquids (ILs), it is impractical to experimentally test the gas adsorption and separation potential of each one of the possible IL/MOF composites formed by the different combinations of these two components. In this study, we developed a comprehensive computational approach integrating Conductor-like Screening Model for Realistic Solvents (COSMO-RS) calculations, density functional theory (DFT) calculations, Grand Canonical Monte Carlo (GCMC) simulations, and machine learning (ML) algorithms to evaluate a wide variety of IL-incorporated ZIF-8 composites for CO<sub>2</sub> separations. We examined 1322 different types of IL/ZIF-8 composites, covering the largest variety of ILs studied to date (8 cations and 35 anions) at various loadings, for flue gas separation and natural gas purification. We simulated CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub> adsorption properties of these composites and used this high-quality molecular simulation data to develop ML models that can predict gas uptakes of any IL/ZIF-8 composite when chemical and structural features of the IL are given. The accurate prediction power of these ML models was shown by comparing their estimates with the experimental and simulation data. Our approach significantly accelerates the assessment of a very large number of IL/ZIF-8 composites and reveals the key molecular features of ILs to make composites for achieving superior gas separation performance.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100373"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing CO2 separation performances of IL/ZIF-8 composites using molecular features of ILs\",\"authors\":\"Hasan Can Gulbalkan ,&nbsp;Alper Uzun ,&nbsp;Seda Keskin\",\"doi\":\"10.1016/j.ccst.2025.100373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given the vast number and diversity of metal-organic frameworks (MOFs) and ionic liquids (ILs), it is impractical to experimentally test the gas adsorption and separation potential of each one of the possible IL/MOF composites formed by the different combinations of these two components. In this study, we developed a comprehensive computational approach integrating Conductor-like Screening Model for Realistic Solvents (COSMO-RS) calculations, density functional theory (DFT) calculations, Grand Canonical Monte Carlo (GCMC) simulations, and machine learning (ML) algorithms to evaluate a wide variety of IL-incorporated ZIF-8 composites for CO<sub>2</sub> separations. We examined 1322 different types of IL/ZIF-8 composites, covering the largest variety of ILs studied to date (8 cations and 35 anions) at various loadings, for flue gas separation and natural gas purification. We simulated CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub> adsorption properties of these composites and used this high-quality molecular simulation data to develop ML models that can predict gas uptakes of any IL/ZIF-8 composite when chemical and structural features of the IL are given. The accurate prediction power of these ML models was shown by comparing their estimates with the experimental and simulation data. Our approach significantly accelerates the assessment of a very large number of IL/ZIF-8 composites and reveals the key molecular features of ILs to make composites for achieving superior gas separation performance.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"14 \",\"pages\":\"Article 100373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于金属有机骨架(MOFs)和离子液体(ILs)的数量众多且种类繁多,因此通过实验测试由这两种成分的不同组合形成的每种可能的IL/MOF复合材料的气体吸附和分离潜力是不切实际的。在这项研究中,我们开发了一种综合的计算方法,集成了现实溶剂类导体筛选模型(cosmos - rs)计算、密度泛函理论(DFT)计算、大规范蒙特卡罗(GCMC)模拟和机器学习(ML)算法,以评估各种il - ZIF-8复合材料用于CO2分离。我们研究了1322种不同类型的IL/ZIF-8复合材料,涵盖了迄今为止研究过的最大种类的IL(8个阳离子和35个阴离子),在不同的负荷下,用于烟气分离和天然气净化。我们模拟了这些复合材料的CO2、CH4和N2的吸附特性,并利用这些高质量的分子模拟数据开发了ML模型,该模型可以在给定IL的化学和结构特征时预测任何IL/ZIF-8复合材料的气体吸收。通过与实验和仿真数据的比较,证明了这些机器学习模型的准确预测能力。我们的方法大大加快了对大量IL/ZIF-8复合材料的评估,并揭示了IL的关键分子特征,从而使复合材料具有卓越的气体分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing CO2 separation performances of IL/ZIF-8 composites using molecular features of ILs
Given the vast number and diversity of metal-organic frameworks (MOFs) and ionic liquids (ILs), it is impractical to experimentally test the gas adsorption and separation potential of each one of the possible IL/MOF composites formed by the different combinations of these two components. In this study, we developed a comprehensive computational approach integrating Conductor-like Screening Model for Realistic Solvents (COSMO-RS) calculations, density functional theory (DFT) calculations, Grand Canonical Monte Carlo (GCMC) simulations, and machine learning (ML) algorithms to evaluate a wide variety of IL-incorporated ZIF-8 composites for CO2 separations. We examined 1322 different types of IL/ZIF-8 composites, covering the largest variety of ILs studied to date (8 cations and 35 anions) at various loadings, for flue gas separation and natural gas purification. We simulated CO2, CH4, and N2 adsorption properties of these composites and used this high-quality molecular simulation data to develop ML models that can predict gas uptakes of any IL/ZIF-8 composite when chemical and structural features of the IL are given. The accurate prediction power of these ML models was shown by comparing their estimates with the experimental and simulation data. Our approach significantly accelerates the assessment of a very large number of IL/ZIF-8 composites and reveals the key molecular features of ILs to make composites for achieving superior gas separation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信