Jiaming Yi, Zhuozhi Lai, Qing Guo, Zhiwei Xing, Qi Sun
{"title":"由共价有机框架膜实现混合能量收集","authors":"Jiaming Yi, Zhuozhi Lai, Qing Guo, Zhiwei Xing, Qi Sun","doi":"10.1016/j.advmem.2025.100130","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of water and thermal energy harvesting presents a promising solution to the intermittency issues associated with individual energy sources. In this study, we show a covalent organic framework (COF) membrane featuring subnanometer, one-dimensional ionic channels, which demonstrate remarkable stability in both acidic and saline environments. The membrane exhibits exceptional permselectivity across various electrolyte solutions, enabling efficient osmotic energy harvesting from proton gradients via reverse electrodialysis. Under a 50-fold concentration gradient of H<sub>2</sub>SO<sub>4</sub>, the membrane achieved a peak output power density of 97.1 W m<sup>−2</sup>. Furthermore, the membrane facilitates thermo-osmotic energy conversion by selectively screening ionic charges driven by combined salinity and temperature gradients. Under simulated estuarine salinity conditions and a 30 K temperature gradient, the COF membrane achieved a maximum output power density of 91.4 W m<sup>−2</sup>—an 18-fold increase compared to the commercial benchmark (5 W m<sup>−2</sup>). This study underscores the significant potential of COF membranes for efficient energy conversion, enabling the effective harvesting of untapped osmotic and low-grade heat energy.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid energy harvesting enabled by a covalent organic framework membrane\",\"authors\":\"Jiaming Yi, Zhuozhi Lai, Qing Guo, Zhiwei Xing, Qi Sun\",\"doi\":\"10.1016/j.advmem.2025.100130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of water and thermal energy harvesting presents a promising solution to the intermittency issues associated with individual energy sources. In this study, we show a covalent organic framework (COF) membrane featuring subnanometer, one-dimensional ionic channels, which demonstrate remarkable stability in both acidic and saline environments. The membrane exhibits exceptional permselectivity across various electrolyte solutions, enabling efficient osmotic energy harvesting from proton gradients via reverse electrodialysis. Under a 50-fold concentration gradient of H<sub>2</sub>SO<sub>4</sub>, the membrane achieved a peak output power density of 97.1 W m<sup>−2</sup>. Furthermore, the membrane facilitates thermo-osmotic energy conversion by selectively screening ionic charges driven by combined salinity and temperature gradients. Under simulated estuarine salinity conditions and a 30 K temperature gradient, the COF membrane achieved a maximum output power density of 91.4 W m<sup>−2</sup>—an 18-fold increase compared to the commercial benchmark (5 W m<sup>−2</sup>). This study underscores the significant potential of COF membranes for efficient energy conversion, enabling the effective harvesting of untapped osmotic and low-grade heat energy.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"5 \",\"pages\":\"Article 100130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823425000041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
水和热能收集的整合为解决与单个能源相关的间歇性问题提供了一个有希望的解决方案。在这项研究中,我们展示了一种具有亚纳米、一维离子通道的共价有机框架(COF)膜,它在酸性和盐水环境中都表现出显著的稳定性。该膜在各种电解质溶液中表现出优异的透选择性,通过反电渗析从质子梯度中高效地收集渗透能量。在H2SO4浓度梯度为50倍的条件下,膜的峰值输出功率密度为97.1 W m−2。此外,该膜通过选择性地筛选由盐度和温度梯度驱动的离子电荷,促进热渗透能量转换。在模拟河口盐度条件和30 K温度梯度下,COF膜的最大输出功率密度为91.4 W m−2,比商业基准(5 W m−2)增加了18倍。这项研究强调了COF膜在高效能量转换方面的巨大潜力,能够有效地收集未开发的渗透和低品位热能。
Hybrid energy harvesting enabled by a covalent organic framework membrane
The integration of water and thermal energy harvesting presents a promising solution to the intermittency issues associated with individual energy sources. In this study, we show a covalent organic framework (COF) membrane featuring subnanometer, one-dimensional ionic channels, which demonstrate remarkable stability in both acidic and saline environments. The membrane exhibits exceptional permselectivity across various electrolyte solutions, enabling efficient osmotic energy harvesting from proton gradients via reverse electrodialysis. Under a 50-fold concentration gradient of H2SO4, the membrane achieved a peak output power density of 97.1 W m−2. Furthermore, the membrane facilitates thermo-osmotic energy conversion by selectively screening ionic charges driven by combined salinity and temperature gradients. Under simulated estuarine salinity conditions and a 30 K temperature gradient, the COF membrane achieved a maximum output power density of 91.4 W m−2—an 18-fold increase compared to the commercial benchmark (5 W m−2). This study underscores the significant potential of COF membranes for efficient energy conversion, enabling the effective harvesting of untapped osmotic and low-grade heat energy.