Dominique Grondin , Chao Tang , Andrew Barney , Agnès François , Heracles Polatidis , Michel Benne , Béatrice Morel
{"title":"基于MCDA分析的长期能源情景排序:留尼旺岛案例","authors":"Dominique Grondin , Chao Tang , Andrew Barney , Agnès François , Heracles Polatidis , Michel Benne , Béatrice Morel","doi":"10.1016/j.segy.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Island territories rely heavily on fossil fuel resources, and transitioning to other energy sources is essential for their progress. To accomplish this, it is imperative to utilize local renewable energy sources. In this study, an analysis of energy planning for Reunion Island has been conducted where Multi-Criteria Decision Analysis (MCDA) methodologies have been used to evaluate the sustainability of energy scenarios for 2050. This evaluation is carried out considering criteria encompassing technical, economic, environmental, and social aspects of the scenarios. Further, perspectives of local actors were considered in the evaluation of these criteria. The results indicate that the greenhouse gas emissions and job creation criteria are considered to be of utmost significance, whilst technical criteria were regarded as the least significant by these local stakeholders. PROMETHEE II and TOPSIS MCDA analysis reveal that the Combined scenario, a scenario where all local energy resources are exploited to their maximum, is the preferred electricity generation scenario. The findings are used to formulate policy recommendations for island planners, helping them to adjust the island's current energy strategies. This study also serves as a valuable resource for other non-interconnected islands undergoing an energy transition.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"17 ","pages":"Article 100171"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term energy scenario ranking with MCDA analysis: The case of Reunion Island\",\"authors\":\"Dominique Grondin , Chao Tang , Andrew Barney , Agnès François , Heracles Polatidis , Michel Benne , Béatrice Morel\",\"doi\":\"10.1016/j.segy.2024.100171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Island territories rely heavily on fossil fuel resources, and transitioning to other energy sources is essential for their progress. To accomplish this, it is imperative to utilize local renewable energy sources. In this study, an analysis of energy planning for Reunion Island has been conducted where Multi-Criteria Decision Analysis (MCDA) methodologies have been used to evaluate the sustainability of energy scenarios for 2050. This evaluation is carried out considering criteria encompassing technical, economic, environmental, and social aspects of the scenarios. Further, perspectives of local actors were considered in the evaluation of these criteria. The results indicate that the greenhouse gas emissions and job creation criteria are considered to be of utmost significance, whilst technical criteria were regarded as the least significant by these local stakeholders. PROMETHEE II and TOPSIS MCDA analysis reveal that the Combined scenario, a scenario where all local energy resources are exploited to their maximum, is the preferred electricity generation scenario. The findings are used to formulate policy recommendations for island planners, helping them to adjust the island's current energy strategies. This study also serves as a valuable resource for other non-interconnected islands undergoing an energy transition.</div></div>\",\"PeriodicalId\":34738,\"journal\":{\"name\":\"Smart Energy\",\"volume\":\"17 \",\"pages\":\"Article 100171\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666955224000418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955224000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Long-term energy scenario ranking with MCDA analysis: The case of Reunion Island
Island territories rely heavily on fossil fuel resources, and transitioning to other energy sources is essential for their progress. To accomplish this, it is imperative to utilize local renewable energy sources. In this study, an analysis of energy planning for Reunion Island has been conducted where Multi-Criteria Decision Analysis (MCDA) methodologies have been used to evaluate the sustainability of energy scenarios for 2050. This evaluation is carried out considering criteria encompassing technical, economic, environmental, and social aspects of the scenarios. Further, perspectives of local actors were considered in the evaluation of these criteria. The results indicate that the greenhouse gas emissions and job creation criteria are considered to be of utmost significance, whilst technical criteria were regarded as the least significant by these local stakeholders. PROMETHEE II and TOPSIS MCDA analysis reveal that the Combined scenario, a scenario where all local energy resources are exploited to their maximum, is the preferred electricity generation scenario. The findings are used to formulate policy recommendations for island planners, helping them to adjust the island's current energy strategies. This study also serves as a valuable resource for other non-interconnected islands undergoing an energy transition.