弹袋扭转动力学

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Anqi Li
{"title":"弹袋扭转动力学","authors":"Anqi Li","doi":"10.1016/j.aam.2024.102826","DOIUrl":null,"url":null,"abstract":"<div><div>For a finite irreducible Coxeter group <span><math><mo>(</mo><mi>W</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> with a fixed Coxeter element <em>c</em> and set of reflections <em>T</em>, Defant and Williams define a pop-tsack torsing operation <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>:</mo><mi>W</mi><mo>→</mo><mi>W</mi></math></span> given by <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mo>⋅</mo><mi>π</mi><msup><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> where <span><math><mi>π</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>⋁</mo></mrow><mrow><mi>t</mi><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>T</mi></mrow><mrow><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></msubsup><mi>t</mi></math></span> is the join of all reflections lying below <em>w</em> in the absolute order in the non-crossing partition lattice <span><math><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>. This is a “dual” notion of the pop-stack sorting operator <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>; <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> was introduced by Defant as a way to generalize the pop-stack sorting operator on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to general Coxeter groups. Define the forward orbit of an element <span><math><mi>w</mi><mo>∈</mo><mi>W</mi></math></span> to be <span><math><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>w</mi><mo>,</mo><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. Defant and Williams established the length of the longest possible forward orbits <span><math><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><mi>W</mi></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>|</mo></math></span> for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the conjectures that they have put forth about enumeration, and in the process we give complete classifications of these elements of Coxeter groups of types A, B and D with near maximal orbit lengths.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102826"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of pop-tsack torsing\",\"authors\":\"Anqi Li\",\"doi\":\"10.1016/j.aam.2024.102826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a finite irreducible Coxeter group <span><math><mo>(</mo><mi>W</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> with a fixed Coxeter element <em>c</em> and set of reflections <em>T</em>, Defant and Williams define a pop-tsack torsing operation <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>:</mo><mi>W</mi><mo>→</mo><mi>W</mi></math></span> given by <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mo>⋅</mo><mi>π</mi><msup><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> where <span><math><mi>π</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>⋁</mo></mrow><mrow><mi>t</mi><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>T</mi></mrow><mrow><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></msubsup><mi>t</mi></math></span> is the join of all reflections lying below <em>w</em> in the absolute order in the non-crossing partition lattice <span><math><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>. This is a “dual” notion of the pop-stack sorting operator <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>; <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> was introduced by Defant as a way to generalize the pop-stack sorting operator on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to general Coxeter groups. Define the forward orbit of an element <span><math><mi>w</mi><mo>∈</mo><mi>W</mi></math></span> to be <span><math><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>w</mi><mo>,</mo><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. Defant and Williams established the length of the longest possible forward orbits <span><math><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><mi>W</mi></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>|</mo></math></span> for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the conjectures that they have put forth about enumeration, and in the process we give complete classifications of these elements of Coxeter groups of types A, B and D with near maximal orbit lengths.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"164 \",\"pages\":\"Article 102826\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001581\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于具有固定Coxeter元素c和反射集T的有限不可约Coxeter群(W,S), Defant和Williams定义了一个pop-tsack扭转运算PopT:W→W,由PopT(W)= W·π(W)−1给出,其中π(W)=±T≤Tw, T∈TNC(W, c) T是在非交叉分割格NC(W, c)中位于W以下的所有反射的绝对序连接。这是pop-stack排序操作符PopS的“双重”概念;pop是由Defant引入的,作为将Sn上的pop-stack排序算子推广到一般Coxeter群的一种方法。定义元素w∈w的正向轨道为OPopT(w)={w,PopT(w),PopT2(w),…}。Defant和Williams根据群对应的Coxeter数建立了巧合型和D型Coxeter群的最长可能正向轨道的长度maxw∈W∈|OPopT(W)|。在他们的论文中,他们还提出了关于列举轨道长度接近最大的元素的多个猜想。我们解决了他们提出的关于枚举的所有猜想,并在此过程中给出了A、B和D型Coxeter群中轨道长度接近最大值的元素的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of pop-tsack torsing
For a finite irreducible Coxeter group (W,S) with a fixed Coxeter element c and set of reflections T, Defant and Williams define a pop-tsack torsing operation PopT:WW given by PopT(w)=wπ(w)1 where π(w)=tTw,tTNC(w,c)t is the join of all reflections lying below w in the absolute order in the non-crossing partition lattice NC(w,c). This is a “dual” notion of the pop-stack sorting operator PopS; PopS was introduced by Defant as a way to generalize the pop-stack sorting operator on Sn to general Coxeter groups. Define the forward orbit of an element wW to be OPopT(w)={w,PopT(w),PopT2(w),}. Defant and Williams established the length of the longest possible forward orbits maxwW|OPopT(w)| for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the conjectures that they have put forth about enumeration, and in the process we give complete classifications of these elements of Coxeter groups of types A, B and D with near maximal orbit lengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信