加泰罗尼亚语中的细胞高度固定,生长功能受限

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Aubrey Blecher, Arnold Knopfmacher
{"title":"加泰罗尼亚语中的细胞高度固定,生长功能受限","authors":"Aubrey Blecher,&nbsp;Arnold Knopfmacher","doi":"10.1016/j.aam.2024.102835","DOIUrl":null,"url":null,"abstract":"<div><div>A word <span><math><mi>w</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of length <em>n</em> over the set of positive integers is called a Catalan word whenever <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>. A restricted growth function is defined as a word <span><math><mi>w</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of length <em>n</em> over the set of positive integers where <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> we have <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>+</mo><mn>1</mn></math></span>. We also define cells and heights of cells and we represent such words as bargraphs (otherwise known as polyominoes) where the <em>i</em>th column contains <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> cells for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span> and where all columns have their bottom cell on the <em>x</em>-axis. In the case of Catalan words, we prove a relationship between the number of cells at different heights and first terms of the expanded polynomial <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. In the case of restricted growth functions we find polynomials <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> where the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup></math></span> counts the number of cells of height <em>j</em> across all rgfs with <em>n</em> parts. In this case we also find bivariate generating functions for rgfs with <em>k</em> blocks, where the generating functions tracks the number of cells at a given height as well as the number of parts.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102835"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cells of fixed height in Catalan words and restricted growth functions\",\"authors\":\"Aubrey Blecher,&nbsp;Arnold Knopfmacher\",\"doi\":\"10.1016/j.aam.2024.102835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A word <span><math><mi>w</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of length <em>n</em> over the set of positive integers is called a Catalan word whenever <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>. A restricted growth function is defined as a word <span><math><mi>w</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of length <em>n</em> over the set of positive integers where <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> we have <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>+</mo><mn>1</mn></math></span>. We also define cells and heights of cells and we represent such words as bargraphs (otherwise known as polyominoes) where the <em>i</em>th column contains <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> cells for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span> and where all columns have their bottom cell on the <em>x</em>-axis. In the case of Catalan words, we prove a relationship between the number of cells at different heights and first terms of the expanded polynomial <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. In the case of restricted growth functions we find polynomials <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> where the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup></math></span> counts the number of cells of height <em>j</em> across all rgfs with <em>n</em> parts. In this case we also find bivariate generating functions for rgfs with <em>k</em> blocks, where the generating functions tracks the number of cells at a given height as well as the number of parts.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"164 \",\"pages\":\"Article 102835\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001672\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001672","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

当w1=1且当k=2,3,…,n时,长度为n的词w=w1w2, wn称为加泰罗尼亚词。一个受限生长函数被定义为一个长度为n的词w=w1w2,在w1=1的正整数集合上,当k≥2时,我们有1≤wk≤max (w1,w2,⋯,wk−1}+1)。我们还定义单元格和单元格的高度,并将这些词表示为条形图(也称为多线形图),其中第i列包含1≤i≤n的wi个单元格,并且所有列的底部单元格都在x轴上。在加泰罗尼亚语的情况下,我们证明了不同高度的单元数与展开多项式(1+x)2n的第一项之间的关系。在限制生长函数的情况下,我们发现多项式Fn(x),其中xj的系数计算了所有有n个部分的rgfs中高度为j的单元格的数量。在这种情况下,我们还找到了具有k块的rgfs的二元生成函数,其中生成函数跟踪给定高度的单元格数量以及部件数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cells of fixed height in Catalan words and restricted growth functions
A word w=w1w2wn of length n over the set of positive integers is called a Catalan word whenever w1=1 and 1wkwk1+1 for k=2,3,,n. A restricted growth function is defined as a word w=w1w2wn of length n over the set of positive integers where w1=1 and for k2 we have 1wkmax{w1,w2,,wk1}+1. We also define cells and heights of cells and we represent such words as bargraphs (otherwise known as polyominoes) where the ith column contains wi cells for 1in and where all columns have their bottom cell on the x-axis. In the case of Catalan words, we prove a relationship between the number of cells at different heights and first terms of the expanded polynomial (1+x)2n. In the case of restricted growth functions we find polynomials Fn(x) where the coefficient of xj counts the number of cells of height j across all rgfs with n parts. In this case we also find bivariate generating functions for rgfs with k blocks, where the generating functions tracks the number of cells at a given height as well as the number of parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信