一种基于电容耦合平面微波谐振器的高精度海水冰厚和盐度检测方法

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Han Shi , Mengjie Song , Junfeng Ge , Long Zhang , Xuan Zhang
{"title":"一种基于电容耦合平面微波谐振器的高精度海水冰厚和盐度检测方法","authors":"Han Shi ,&nbsp;Mengjie Song ,&nbsp;Junfeng Ge ,&nbsp;Long Zhang ,&nbsp;Xuan Zhang","doi":"10.1016/j.coldregions.2024.104417","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of saltwater ice on a ship can result in damage to the safety of the crew and the ship itself. A capacitive coupled split-ring resonant sensor was employed to investigate the influence of thickness and salinity of saltwater and saltwater ice on the transmission scattering parameter signal of the sensor. The resonant amplitude of the signal exhibited a near linear relationship with the salinity of saltwater samples, increasing from −18.24 dB to −14.75 dB as the salinity increased from 0 % to 20 %. The resonant amplitude exhibited a significantly decrease of 20.28 dB with the salinity of saltwater ice increasing from 0 to 15 %, and would be relatively stable at around −21.72 dB when the salinity of saltwater ice increased above 10 %. The salinity would be more sensitively detected in saltwater ice than in saltwater in the range of 0–10 %, where the resonant amplitude decreased 20.28 dB as the salinity increased. The measurement accuracy for salinity detection in saltwater ice was 70.22 %. The thickness of saltwater ice was able to detected accurately in the range of 0–15 mm with an accuracy of 86.9 %. In conclusion, this work provides a reference for the detection of saltwater ice on ship hulls and offshore wind turbines, thereby improving the efficiency and safety of these offshore structures.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"231 ","pages":"Article 104417"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-precision saltwater ice thickness and salinity detection method based on capacitive coupled planar microwave resonator\",\"authors\":\"Han Shi ,&nbsp;Mengjie Song ,&nbsp;Junfeng Ge ,&nbsp;Long Zhang ,&nbsp;Xuan Zhang\",\"doi\":\"10.1016/j.coldregions.2024.104417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The formation of saltwater ice on a ship can result in damage to the safety of the crew and the ship itself. A capacitive coupled split-ring resonant sensor was employed to investigate the influence of thickness and salinity of saltwater and saltwater ice on the transmission scattering parameter signal of the sensor. The resonant amplitude of the signal exhibited a near linear relationship with the salinity of saltwater samples, increasing from −18.24 dB to −14.75 dB as the salinity increased from 0 % to 20 %. The resonant amplitude exhibited a significantly decrease of 20.28 dB with the salinity of saltwater ice increasing from 0 to 15 %, and would be relatively stable at around −21.72 dB when the salinity of saltwater ice increased above 10 %. The salinity would be more sensitively detected in saltwater ice than in saltwater in the range of 0–10 %, where the resonant amplitude decreased 20.28 dB as the salinity increased. The measurement accuracy for salinity detection in saltwater ice was 70.22 %. The thickness of saltwater ice was able to detected accurately in the range of 0–15 mm with an accuracy of 86.9 %. In conclusion, this work provides a reference for the detection of saltwater ice on ship hulls and offshore wind turbines, thereby improving the efficiency and safety of these offshore structures.</div></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"231 \",\"pages\":\"Article 104417\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24002982\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002982","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在船舶上形成的盐水冰会对船员和船舶本身的安全造成损害。采用电容耦合裂环谐振传感器,研究了海水和盐水冰的厚度、盐度对传感器透射散射参数信号的影响。信号的共振振幅与盐水样品的盐度呈近似线性关系,随着盐度从0%增加到20%,信号的共振振幅从−18.24 dB增加到−14.75 dB。当海水冰的盐度从0增加到15%时,共振振幅显著减小20.28 dB,当海水冰的盐度增加到10%以上时,共振振幅相对稳定在- 21.72 dB左右。在0 ~ 10%范围内,海水冰比海水更敏感地探测到盐度,随着盐度的增加,共振振幅降低20.28 dB。海水冰中盐度检测的测量精度为70.22%。海水冰厚度在0 ~ 15 mm范围内可准确探测,精度为86.9%。综上所述,本工作为船舶船体和海上风力发电机的海水冰检测提供了参考,从而提高海上结构物的效率和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-precision saltwater ice thickness and salinity detection method based on capacitive coupled planar microwave resonator
The formation of saltwater ice on a ship can result in damage to the safety of the crew and the ship itself. A capacitive coupled split-ring resonant sensor was employed to investigate the influence of thickness and salinity of saltwater and saltwater ice on the transmission scattering parameter signal of the sensor. The resonant amplitude of the signal exhibited a near linear relationship with the salinity of saltwater samples, increasing from −18.24 dB to −14.75 dB as the salinity increased from 0 % to 20 %. The resonant amplitude exhibited a significantly decrease of 20.28 dB with the salinity of saltwater ice increasing from 0 to 15 %, and would be relatively stable at around −21.72 dB when the salinity of saltwater ice increased above 10 %. The salinity would be more sensitively detected in saltwater ice than in saltwater in the range of 0–10 %, where the resonant amplitude decreased 20.28 dB as the salinity increased. The measurement accuracy for salinity detection in saltwater ice was 70.22 %. The thickness of saltwater ice was able to detected accurately in the range of 0–15 mm with an accuracy of 86.9 %. In conclusion, this work provides a reference for the detection of saltwater ice on ship hulls and offshore wind turbines, thereby improving the efficiency and safety of these offshore structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Regions Science and Technology
Cold Regions Science and Technology 工程技术-地球科学综合
CiteScore
7.40
自引率
12.20%
发文量
209
审稿时长
4.9 months
期刊介绍: Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere. Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost. Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信