180Hg中不对称到对称裂变跃迁:激发能和角动量的影响

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Dalip Singh Verma, Pooja Chauhan, Vivek
{"title":"180Hg中不对称到对称裂变跃迁:激发能和角动量的影响","authors":"Dalip Singh Verma,&nbsp;Pooja Chauhan,&nbsp;Vivek","doi":"10.1016/j.nuclphysa.2025.123017","DOIUrl":null,"url":null,"abstract":"<div><div>The transition from asymmetric to symmetric fission in the <sup>180</sup>Hg<sup>⁎</sup> nucleus, formed in the <sup>36</sup>Ar + <sup>144</sup>Sm reaction, as a function of excitation energy and angular momentum has been investigated. Using the dynamical cluster-decay model, the fragmentation potential, preformation probability, and cross-sections have been analyzed for asymmetric (80, 100) and symmetric (90, 90) mass fission channels, considering both the optimum hot and cold orientations of the fragments, as well as the case of symmetric mass fission channel with fragments assumed to be spherical. The calculations reveal that deformed proton and neutron shell closures favour asymmetric fission at lower excitation energies, while a transition to symmetric fission occurs near 40 MeV of excitation energy due to changes in fragment deformation with excitation energy. These findings are consistent with the available experimental observations and theoretical predictions. The transition also occurs with increasing angular momentum, but only for optimum hot orientations.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1055 ","pages":"Article 123017"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric to symmetric fission transition in 180Hg⁎: Effects of excitation energy and angular momentum\",\"authors\":\"Dalip Singh Verma,&nbsp;Pooja Chauhan,&nbsp;Vivek\",\"doi\":\"10.1016/j.nuclphysa.2025.123017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition from asymmetric to symmetric fission in the <sup>180</sup>Hg<sup>⁎</sup> nucleus, formed in the <sup>36</sup>Ar + <sup>144</sup>Sm reaction, as a function of excitation energy and angular momentum has been investigated. Using the dynamical cluster-decay model, the fragmentation potential, preformation probability, and cross-sections have been analyzed for asymmetric (80, 100) and symmetric (90, 90) mass fission channels, considering both the optimum hot and cold orientations of the fragments, as well as the case of symmetric mass fission channel with fragments assumed to be spherical. The calculations reveal that deformed proton and neutron shell closures favour asymmetric fission at lower excitation energies, while a transition to symmetric fission occurs near 40 MeV of excitation energy due to changes in fragment deformation with excitation energy. These findings are consistent with the available experimental observations and theoretical predictions. The transition also occurs with increasing angular momentum, but only for optimum hot orientations.</div></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1055 \",\"pages\":\"Article 123017\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037594742500003X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037594742500003X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在36Ar + 144Sm反应中形成的180Hg原子核从不对称裂变向对称裂变转变的过程,以及该过程与激发能和角动量的关系。利用动态团簇衰变模型,分析了非对称(80,100)和对称(90,90)质量裂变通道的破碎势、预形成概率和截面,同时考虑了碎片的最佳冷热取向,以及假设碎片为球形的对称质量裂变通道的情况。计算表明,在较低的激发能下,变形的质子和中子壳闭合有利于不对称裂变,而在40 MeV激发能附近,由于碎片变形随激发能的变化而发生过渡到对称裂变。这些发现与现有的实验观察和理论预测相一致。这种转变也会随着角动量的增加而发生,但只有在最佳热取向时才会发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric to symmetric fission transition in 180Hg⁎: Effects of excitation energy and angular momentum
The transition from asymmetric to symmetric fission in the 180Hg nucleus, formed in the 36Ar + 144Sm reaction, as a function of excitation energy and angular momentum has been investigated. Using the dynamical cluster-decay model, the fragmentation potential, preformation probability, and cross-sections have been analyzed for asymmetric (80, 100) and symmetric (90, 90) mass fission channels, considering both the optimum hot and cold orientations of the fragments, as well as the case of symmetric mass fission channel with fragments assumed to be spherical. The calculations reveal that deformed proton and neutron shell closures favour asymmetric fission at lower excitation energies, while a transition to symmetric fission occurs near 40 MeV of excitation energy due to changes in fragment deformation with excitation energy. These findings are consistent with the available experimental observations and theoretical predictions. The transition also occurs with increasing angular momentum, but only for optimum hot orientations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信