QCD凝聚和αs来自τ衰变

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Stephan Narison
{"title":"QCD凝聚和αs来自τ衰变","authors":"Stephan Narison","doi":"10.1016/j.nuclphysa.2024.123014","DOIUrl":null,"url":null,"abstract":"<div><div>We improve the determinations of the QCD condensates within the SVZ expansion in the axial-vector (A) channel using the ratio of Laplace sum rule (LSR) <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>10</mn></mrow><mrow><mi>A</mi></mrow></msubsup><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> within stability criteria and <em>τ</em>-like higher moments <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> within stability for arbitrary <em>τ</em>-mass squared <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We find the same violation of the factorization by a factor 6 of the four-quark condensate as from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo></math></span> Hadrons data. One can notice a systematic alternate sign and no exponential growth of the size of these condensates. Then, we extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the lowest <em>τ</em>-decay like moment. We obtain to order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> the conservative value from the <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-stability until <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3178</mn><mo>(</mo><mn>66</mn><mo>)</mo></math></span> (FO) and 0.3380 (44) (CI) leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><msub><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1206</mn><msub><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). We extend the analysis to the V–A channel and find: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>V</mi><mo>−</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3135</mn><mo>(</mo><mn>83</mn><mo>)</mo></math></span> (FO) and 0.3322 (81) (CI) leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>V</mi><mo>−</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1177</mn><msub><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1200</mn><msub><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). We observe that in different channels (<span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo></math></span> Hadrons, A, V–A), the extraction of <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo></math></span> at the observed <em>τ</em>-mass leads to an overestimate of its value. Our determinations from these different channels lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3140</mn><mo>(</mo><mn>44</mn><mo>)</mo></math></span> (FO) and 0.3346 (35) (CI) corresponding to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1178</mn><msub><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1202</mn><msub><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). Comparisons with some other results are done.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1055 ","pages":"Article 123014"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QCD condensates and αs from τ-decay\",\"authors\":\"Stephan Narison\",\"doi\":\"10.1016/j.nuclphysa.2024.123014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We improve the determinations of the QCD condensates within the SVZ expansion in the axial-vector (A) channel using the ratio of Laplace sum rule (LSR) <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>10</mn></mrow><mrow><mi>A</mi></mrow></msubsup><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> within stability criteria and <em>τ</em>-like higher moments <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> within stability for arbitrary <em>τ</em>-mass squared <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We find the same violation of the factorization by a factor 6 of the four-quark condensate as from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo></math></span> Hadrons data. One can notice a systematic alternate sign and no exponential growth of the size of these condensates. Then, we extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the lowest <em>τ</em>-decay like moment. We obtain to order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> the conservative value from the <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-stability until <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3178</mn><mo>(</mo><mn>66</mn><mo>)</mo></math></span> (FO) and 0.3380 (44) (CI) leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><msub><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1206</mn><msub><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). We extend the analysis to the V–A channel and find: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>V</mi><mo>−</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3135</mn><mo>(</mo><mn>83</mn><mo>)</mo></math></span> (FO) and 0.3322 (81) (CI) leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>V</mi><mo>−</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1177</mn><msub><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1200</mn><msub><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). We observe that in different channels (<span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo></math></span> Hadrons, A, V–A), the extraction of <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo></math></span> at the observed <em>τ</em>-mass leads to an overestimate of its value. Our determinations from these different channels lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3140</mn><mo>(</mo><mn>44</mn><mo>)</mo></math></span> (FO) and 0.3346 (35) (CI) corresponding to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1178</mn><msub><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1202</mn><msub><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). Comparisons with some other results are done.</div></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1055 \",\"pages\":\"Article 123014\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947424001969\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424001969","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们改进了轴向矢量(A)通道中SVZ膨胀内的QCD凝聚体的确定,使用了稳定性准则内的拉普拉斯和规则(LSR) R10A(τ)和任意τ-质量平方(50)稳定性内的τ-类高矩Rn,A的比值。我们发现与e+e−→强子数据一样,四夸克凝聚的分解被破坏了6个因子。人们可以注意到一个系统的交替符号,而这些凝聚物的大小没有指数增长。然后,我们从最低的类τ衰减矩中提取αs。我们从50 -稳定性得到αs4阶的保守值,直到Mτ2: αs(Mτ)|A=0.3178(66) (FO)和0.3380 (44)(CI),从而得到αs(MZ)|A=0.1182(8)fit(3)进化。(FO)和0.1206(5)拟合(3)进化。(CI)。我们将分析扩展到V - A通道,发现αs(Mτ)|V - A=0.3135(83) (FO)和0.3322 (81)(CI),导致αs(MZ)|V - A=0.1177(10)fit(3)进化。(FO)和0.1200(9)拟合(3)进化。(CI)。我们观察到,在不同的通道(e+e−→强子,A, V-A)中,在观测到的τ-质量处提取αs(Mτ)会导致其值的高估。我们从这些不同的通道中确定的平均值为:αs(Mτ)=0.3140(44) (FO)和0.3346 (35)(CI),对应于αs(MZ)=0.1178(6)拟合(3)进化。(FO)和0.1202(4)拟合(3)进化。(CI)。并与其他结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QCD condensates and αs from τ-decay
We improve the determinations of the QCD condensates within the SVZ expansion in the axial-vector (A) channel using the ratio of Laplace sum rule (LSR) R10A(τ) within stability criteria and τ-like higher moments Rn,A within stability for arbitrary τ-mass squared s0. We find the same violation of the factorization by a factor 6 of the four-quark condensate as from e+e Hadrons data. One can notice a systematic alternate sign and no exponential growth of the size of these condensates. Then, we extract αs from the lowest τ-decay like moment. We obtain to order αs4 the conservative value from the s0-stability until Mτ2: αs(Mτ)|A=0.3178(66) (FO) and 0.3380 (44) (CI) leading to: αs(MZ)|A=0.1182(8)fit(3)evol. (FO) and 0.1206(5)fit(3)evol. (CI). We extend the analysis to the V–A channel and find: αs(Mτ)|VA=0.3135(83) (FO) and 0.3322 (81) (CI) leading to: αs(MZ)|VA=0.1177(10)fit(3)evol. (FO) and 0.1200(9)fit(3)evol. (CI). We observe that in different channels (e+e Hadrons, A, V–A), the extraction of αs(Mτ) at the observed τ-mass leads to an overestimate of its value. Our determinations from these different channels lead to the mean: αs(Mτ)=0.3140(44) (FO) and 0.3346 (35) (CI) corresponding to: αs(MZ)=0.1178(6)fit(3)evol. (FO) and 0.1202(4)fit(3)evol. (CI). Comparisons with some other results are done.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信