土壤微生物细胞提取物的碳和能量利用

IF 3.7 2区 农林科学 Q1 ECOLOGY
Milan Varsadiya , Fatemeh Dehghani , Shiyue Yang , Evgenia Blagodatskaya , Thomas Maskow , Dimitri V. Meier , Tillmann Lueders
{"title":"土壤微生物细胞提取物的碳和能量利用","authors":"Milan Varsadiya ,&nbsp;Fatemeh Dehghani ,&nbsp;Shiyue Yang ,&nbsp;Evgenia Blagodatskaya ,&nbsp;Thomas Maskow ,&nbsp;Dimitri V. Meier ,&nbsp;Tillmann Lueders","doi":"10.1016/j.ejsobi.2025.103713","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial carbon use efficiency (CUE), the ratio of carbon retained in biomass vs. total C uptake, is central to our understanding of organic C turnover in soil. A precise quantification of CUE in soils can be challenging, given the considerable analytical uncertainties of organic and inorganic C backgrounds. At the same time, CUE measured for model pure cultures will be distinct from a diverse microbiota in soil. As a proxy between laboratory cultures and complex soil microbiomes, we tested soil-free microbial cell extracts (SFCE) to unravel patterns of C utilization in soil-derived microbiomes of reduced complexity. For this, we have revisited and optimized established protocols to extract microbial cells from agricultural soil via Nycodenz density centrifugation. The total extracted cells were quantified, accounting for up to ∼3.5 × 10<sup>7</sup> cells g<sup>−1</sup> soil and representing ∼12.5 % of the original soil microbiome. The diversity of microbes in SFCE, while consistently reduced compared to soil, still retained a surprisingly high proportion of the original soil microbiome, with ASVs recovered from 21 phyla. We then inferred CUE from calorespirometric measurements (metabolic heat flow and CO<sub>2</sub> production) to compare values between SFCE and intact soil. Both were amended with substrates (glucose, glutamine, and glycerol) of different C and N content, and C oxidation state (NOSC). SFCE showed CUE values principally comparable to that of the intact soil, but with substrate-specific distinctions. Amplicon sequencing and qPCR-based quantification showed typical soil taxa like <em>Pseudomonas</em>, <em>Pseudarthrobacter</em>, and <em>Bacteroidota</em> to respond to substrate addition in soil and SFCE. Our results support the use of SFCE as a valuable and complementary approach toward elucidating microbial CUE and growth patterns for complex soil microbiota.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103713"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon and energy utilization in microbial cell extracts from soil\",\"authors\":\"Milan Varsadiya ,&nbsp;Fatemeh Dehghani ,&nbsp;Shiyue Yang ,&nbsp;Evgenia Blagodatskaya ,&nbsp;Thomas Maskow ,&nbsp;Dimitri V. Meier ,&nbsp;Tillmann Lueders\",\"doi\":\"10.1016/j.ejsobi.2025.103713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial carbon use efficiency (CUE), the ratio of carbon retained in biomass vs. total C uptake, is central to our understanding of organic C turnover in soil. A precise quantification of CUE in soils can be challenging, given the considerable analytical uncertainties of organic and inorganic C backgrounds. At the same time, CUE measured for model pure cultures will be distinct from a diverse microbiota in soil. As a proxy between laboratory cultures and complex soil microbiomes, we tested soil-free microbial cell extracts (SFCE) to unravel patterns of C utilization in soil-derived microbiomes of reduced complexity. For this, we have revisited and optimized established protocols to extract microbial cells from agricultural soil via Nycodenz density centrifugation. The total extracted cells were quantified, accounting for up to ∼3.5 × 10<sup>7</sup> cells g<sup>−1</sup> soil and representing ∼12.5 % of the original soil microbiome. The diversity of microbes in SFCE, while consistently reduced compared to soil, still retained a surprisingly high proportion of the original soil microbiome, with ASVs recovered from 21 phyla. We then inferred CUE from calorespirometric measurements (metabolic heat flow and CO<sub>2</sub> production) to compare values between SFCE and intact soil. Both were amended with substrates (glucose, glutamine, and glycerol) of different C and N content, and C oxidation state (NOSC). SFCE showed CUE values principally comparable to that of the intact soil, but with substrate-specific distinctions. Amplicon sequencing and qPCR-based quantification showed typical soil taxa like <em>Pseudomonas</em>, <em>Pseudarthrobacter</em>, and <em>Bacteroidota</em> to respond to substrate addition in soil and SFCE. Our results support the use of SFCE as a valuable and complementary approach toward elucidating microbial CUE and growth patterns for complex soil microbiota.</div></div>\",\"PeriodicalId\":12057,\"journal\":{\"name\":\"European Journal of Soil Biology\",\"volume\":\"124 \",\"pages\":\"Article 103713\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1164556325000056\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556325000056","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物碳利用效率(CUE),即生物量中保留的碳与总碳吸收的比率,是我们理解土壤有机碳周转的核心。考虑到有机和无机碳背景的分析不确定性,土壤中CUE的精确定量可能具有挑战性。同时,为模型纯培养物测量的CUE将与土壤中的多种微生物群不同。作为实验室培养和复杂土壤微生物组之间的代理,我们测试了无土壤微生物细胞提取物(SFCE),以揭示复杂性降低的土壤来源微生物组对C的利用模式。为此,我们重新审视并优化了通过Nycodenz密度离心从农业土壤中提取微生物细胞的既定方案。对提取的总细胞进行了定量,占到~ 3.5 × 107个细胞g−1土壤,占原始土壤微生物组的~ 12.5%。与土壤相比,SFCE中微生物的多样性不断减少,但仍然保留了原始土壤微生物组的高比例,其中有21个门恢复了asv。然后,我们从热肺测量(代谢热流和二氧化碳产生)中推断出CUE,以比较SFCE和完整土壤之间的值。两者都用不同C、N含量和C氧化态(NOSC)的底物(葡萄糖、谷氨酰胺和甘油)进行修饰。SFCE的CUE值与完整土壤基本相当,但存在基质特异性差异。扩增子测序和基于qpcr的定量分析显示,假单胞菌、假节杆菌和拟杆菌属等典型土壤分类群对土壤基质添加和SFCE有响应。我们的研究结果支持SFCE作为一种有价值的补充方法来阐明复杂土壤微生物群的微生物CUE和生长模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon and energy utilization in microbial cell extracts from soil

Carbon and energy utilization in microbial cell extracts from soil
Microbial carbon use efficiency (CUE), the ratio of carbon retained in biomass vs. total C uptake, is central to our understanding of organic C turnover in soil. A precise quantification of CUE in soils can be challenging, given the considerable analytical uncertainties of organic and inorganic C backgrounds. At the same time, CUE measured for model pure cultures will be distinct from a diverse microbiota in soil. As a proxy between laboratory cultures and complex soil microbiomes, we tested soil-free microbial cell extracts (SFCE) to unravel patterns of C utilization in soil-derived microbiomes of reduced complexity. For this, we have revisited and optimized established protocols to extract microbial cells from agricultural soil via Nycodenz density centrifugation. The total extracted cells were quantified, accounting for up to ∼3.5 × 107 cells g−1 soil and representing ∼12.5 % of the original soil microbiome. The diversity of microbes in SFCE, while consistently reduced compared to soil, still retained a surprisingly high proportion of the original soil microbiome, with ASVs recovered from 21 phyla. We then inferred CUE from calorespirometric measurements (metabolic heat flow and CO2 production) to compare values between SFCE and intact soil. Both were amended with substrates (glucose, glutamine, and glycerol) of different C and N content, and C oxidation state (NOSC). SFCE showed CUE values principally comparable to that of the intact soil, but with substrate-specific distinctions. Amplicon sequencing and qPCR-based quantification showed typical soil taxa like Pseudomonas, Pseudarthrobacter, and Bacteroidota to respond to substrate addition in soil and SFCE. Our results support the use of SFCE as a valuable and complementary approach toward elucidating microbial CUE and growth patterns for complex soil microbiota.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Soil Biology
European Journal of Soil Biology 环境科学-生态学
CiteScore
6.90
自引率
0.00%
发文量
51
审稿时长
27 days
期刊介绍: The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信