基于交互模型估计的机器人刚软非均质接触力位协调优化

IF 5.4
Haochen Zheng , Xueqian Zhai , Hongmin Wu , Jia Pan , Zhihao Xu , Xuefeng Zhou
{"title":"基于交互模型估计的机器人刚软非均质接触力位协调优化","authors":"Haochen Zheng ,&nbsp;Xueqian Zhai ,&nbsp;Hongmin Wu ,&nbsp;Jia Pan ,&nbsp;Zhihao Xu ,&nbsp;Xuefeng Zhou","doi":"10.1016/j.birob.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by Model Predictive Interaction Control (MPIC), this paper proposes differential models for estimating contact geometric parameters and normal-friction forces and formulates an optimal control problem with multiple constraints to allow robots to perform rigid–soft heterogeneous contact tasks. Within the MPIC, robot dynamics are linearized, and Extended Kalman Filters are used for the online estimation of geometry-aware parameters. Meanwhile, a geometry-aware Hertz contact model is introduced for the online estimation of contact forces. We then implement the force-position coordinate optimization by incorporating the contact parameters and interaction force constraints into a gradient-based optimization MPC. Experimental validations were designed for two contact modes: “single-point contact” and “continuous contact”, involving materials with four different Young’s moduli and tested in human arm “relaxation–contraction” task. Results indicate that our framework ensures consistent geometry-aware parameter estimation and maintains reliable force interaction to guarantee safety. Our method reduces the maximum impact force by 50% and decreases the average force error by 42%. The proposed framework has potential applications in medical and industrial tasks involving the manipulation of rigid, soft, and deformable objects.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 1","pages":"Article 100194"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction model estimation-based robotic force-position coordinated optimization for rigid–soft heterogeneous contact tasks\",\"authors\":\"Haochen Zheng ,&nbsp;Xueqian Zhai ,&nbsp;Hongmin Wu ,&nbsp;Jia Pan ,&nbsp;Zhihao Xu ,&nbsp;Xuefeng Zhou\",\"doi\":\"10.1016/j.birob.2024.100194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inspired by Model Predictive Interaction Control (MPIC), this paper proposes differential models for estimating contact geometric parameters and normal-friction forces and formulates an optimal control problem with multiple constraints to allow robots to perform rigid–soft heterogeneous contact tasks. Within the MPIC, robot dynamics are linearized, and Extended Kalman Filters are used for the online estimation of geometry-aware parameters. Meanwhile, a geometry-aware Hertz contact model is introduced for the online estimation of contact forces. We then implement the force-position coordinate optimization by incorporating the contact parameters and interaction force constraints into a gradient-based optimization MPC. Experimental validations were designed for two contact modes: “single-point contact” and “continuous contact”, involving materials with four different Young’s moduli and tested in human arm “relaxation–contraction” task. Results indicate that our framework ensures consistent geometry-aware parameter estimation and maintains reliable force interaction to guarantee safety. Our method reduces the maximum impact force by 50% and decreases the average force error by 42%. The proposed framework has potential applications in medical and industrial tasks involving the manipulation of rigid, soft, and deformable objects.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 1\",\"pages\":\"Article 100194\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379724000524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379724000524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受模型预测交互控制(MPIC)的启发,本文提出了估计接触几何参数和法向摩擦力的微分模型,并提出了一个多约束的最优控制问题,使机器人能够执行刚软非均质接触任务。在MPIC中,机器人动力学被线性化,扩展卡尔曼滤波器用于几何感知参数的在线估计。同时,引入了一种几何感知的赫兹接触模型,用于接触力的在线估计。然后,通过将接触参数和相互作用力约束纳入到基于梯度的优化MPC中,实现了力-位置坐标优化。实验验证设计了两种接触模式:“单点接触”和“连续接触”,涉及四种不同杨氏模量的材料,并在人体手臂“松弛-收缩”任务中进行了测试。结果表明,该框架保证了几何感知参数估计的一致性,并保持了可靠的力相互作用,以保证安全。该方法使最大冲击力减小50%,平均冲击力误差减小42%。所提出的框架在涉及刚性、柔性和可变形物体的操作的医疗和工业任务中具有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction model estimation-based robotic force-position coordinated optimization for rigid–soft heterogeneous contact tasks
Inspired by Model Predictive Interaction Control (MPIC), this paper proposes differential models for estimating contact geometric parameters and normal-friction forces and formulates an optimal control problem with multiple constraints to allow robots to perform rigid–soft heterogeneous contact tasks. Within the MPIC, robot dynamics are linearized, and Extended Kalman Filters are used for the online estimation of geometry-aware parameters. Meanwhile, a geometry-aware Hertz contact model is introduced for the online estimation of contact forces. We then implement the force-position coordinate optimization by incorporating the contact parameters and interaction force constraints into a gradient-based optimization MPC. Experimental validations were designed for two contact modes: “single-point contact” and “continuous contact”, involving materials with four different Young’s moduli and tested in human arm “relaxation–contraction” task. Results indicate that our framework ensures consistent geometry-aware parameter estimation and maintains reliable force interaction to guarantee safety. Our method reduces the maximum impact force by 50% and decreases the average force error by 42%. The proposed framework has potential applications in medical and industrial tasks involving the manipulation of rigid, soft, and deformable objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信