非线性声子晶体中的对称性破缺和非互易:来自原子相互作用的启示

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seyed Mohammad Hosein Abedy Nejad, Mir Masoud Seyyed Fakhrabadi
{"title":"非线性声子晶体中的对称性破缺和非互易:来自原子相互作用的启示","authors":"Seyed Mohammad Hosein Abedy Nejad,&nbsp;Mir Masoud Seyyed Fakhrabadi","doi":"10.1016/j.mechmat.2024.105231","DOIUrl":null,"url":null,"abstract":"<div><div>Symmetry breaking is an emerging trend in metamaterial research. To date, studies have primarily focused on breaking spatial or temporal symmetries through active interactions, leading to promising applications in waveguiding and manipulation. In this paper, we explore symmetry-breaking mechanisms by implementing the Morse-type potential function, resulting in asymmetric stiffness with different behaviors in tension and compression. We further answer whether this type of asymmetric stiffness leads to nonreciprocal behavior. Hence, our research focuses on wave propagation in nonlinear one- and two-dimensional phononic crystals using the Morse potential function. Our methodology then involves extracting dispersion curves using the semi-analytic method of multiple scales and numerical Spectro-spatial analysis. Our findings reveal interesting characteristics, including the formation of a bandgap at lower wave numbers (low-frequency waves), asymmetric wave propagation, and wave amplification. These results hold substantial potential for the design of advanced waveguides and wave filters.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"201 ","pages":"Article 105231"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry breaking and nonreciprocity in nonlinear phononic crystals: Inspiration from atomic interactions\",\"authors\":\"Seyed Mohammad Hosein Abedy Nejad,&nbsp;Mir Masoud Seyyed Fakhrabadi\",\"doi\":\"10.1016/j.mechmat.2024.105231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Symmetry breaking is an emerging trend in metamaterial research. To date, studies have primarily focused on breaking spatial or temporal symmetries through active interactions, leading to promising applications in waveguiding and manipulation. In this paper, we explore symmetry-breaking mechanisms by implementing the Morse-type potential function, resulting in asymmetric stiffness with different behaviors in tension and compression. We further answer whether this type of asymmetric stiffness leads to nonreciprocal behavior. Hence, our research focuses on wave propagation in nonlinear one- and two-dimensional phononic crystals using the Morse potential function. Our methodology then involves extracting dispersion curves using the semi-analytic method of multiple scales and numerical Spectro-spatial analysis. Our findings reveal interesting characteristics, including the formation of a bandgap at lower wave numbers (low-frequency waves), asymmetric wave propagation, and wave amplification. These results hold substantial potential for the design of advanced waveguides and wave filters.</div></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":\"201 \",\"pages\":\"Article 105231\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663624003235\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624003235","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对称破缺是超材料研究的一个新兴趋势。迄今为止,研究主要集中在通过主动相互作用打破空间或时间对称性,从而在波导和操纵方面有前景的应用。在本文中,我们通过实现莫尔斯型势函数来探索对称性破坏机制,从而产生具有不同拉伸和压缩行为的非对称刚度。我们进一步回答是否这种类型的不对称刚度导致非互反行为。因此,我们的研究重点是利用莫尔斯势函数研究波在非线性一维和二维声子晶体中的传播。然后,我们的方法包括使用多尺度半解析方法和数值光谱空间分析提取色散曲线。我们的发现揭示了一些有趣的特征,包括在较低波数(低频波)处形成带隙、不对称波传播和波放大。这些结果对设计先进的波导和滤波器具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry breaking and nonreciprocity in nonlinear phononic crystals: Inspiration from atomic interactions
Symmetry breaking is an emerging trend in metamaterial research. To date, studies have primarily focused on breaking spatial or temporal symmetries through active interactions, leading to promising applications in waveguiding and manipulation. In this paper, we explore symmetry-breaking mechanisms by implementing the Morse-type potential function, resulting in asymmetric stiffness with different behaviors in tension and compression. We further answer whether this type of asymmetric stiffness leads to nonreciprocal behavior. Hence, our research focuses on wave propagation in nonlinear one- and two-dimensional phononic crystals using the Morse potential function. Our methodology then involves extracting dispersion curves using the semi-analytic method of multiple scales and numerical Spectro-spatial analysis. Our findings reveal interesting characteristics, including the formation of a bandgap at lower wave numbers (low-frequency waves), asymmetric wave propagation, and wave amplification. These results hold substantial potential for the design of advanced waveguides and wave filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信