Ruonan Liu , Yaotian Yan , Liang Dun , Taili Yang , Bin Qin , Peijia Wang , Wei Cai , Shude Liu , Xiaohang Zheng
{"title":"氧空位介导的高效析氧反应的高熵氧化物电催化剂","authors":"Ruonan Liu , Yaotian Yan , Liang Dun , Taili Yang , Bin Qin , Peijia Wang , Wei Cai , Shude Liu , Xiaohang Zheng","doi":"10.1016/j.mtcata.2024.100086","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxides hold great potential for water splitting due to their tunable electronic structures and abundant availability. However, their inherently poor electrical conductivity and limited catalytic activity hinder their practical implementation. Herein, high-entropy oxide (FeCoNiCrCuO) electrocatalysts featuring grain-like structure and oxygen vacancies-enriched surface were synthesized through an ultra-fast non-equilibrium high-temperature shock. The introduction of oxygen vacancies modulates the electronic structure and increases the carrier concentration, accelerating the rate-determining step of the oxygen evolution reactions and reducing the overpotential of oxygen evolution reactions. Consequently, the synthesized FeCoNiCrCuO electrocatalyst delivers a low overpotential of 256 mV at a current density of 10 mA·cm⁻² and a Tafel slope of 48.2 mV·dec⁻¹ in 1 M KOH, which is superior to samples lacking oxygen vacancies after annealing. This study presents an alternative approach to enhancing OER activity by employing a high-entropy oxide engineering strategy.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100086"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction\",\"authors\":\"Ruonan Liu , Yaotian Yan , Liang Dun , Taili Yang , Bin Qin , Peijia Wang , Wei Cai , Shude Liu , Xiaohang Zheng\",\"doi\":\"10.1016/j.mtcata.2024.100086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal oxides hold great potential for water splitting due to their tunable electronic structures and abundant availability. However, their inherently poor electrical conductivity and limited catalytic activity hinder their practical implementation. Herein, high-entropy oxide (FeCoNiCrCuO) electrocatalysts featuring grain-like structure and oxygen vacancies-enriched surface were synthesized through an ultra-fast non-equilibrium high-temperature shock. The introduction of oxygen vacancies modulates the electronic structure and increases the carrier concentration, accelerating the rate-determining step of the oxygen evolution reactions and reducing the overpotential of oxygen evolution reactions. Consequently, the synthesized FeCoNiCrCuO electrocatalyst delivers a low overpotential of 256 mV at a current density of 10 mA·cm⁻² and a Tafel slope of 48.2 mV·dec⁻¹ in 1 M KOH, which is superior to samples lacking oxygen vacancies after annealing. This study presents an alternative approach to enhancing OER activity by employing a high-entropy oxide engineering strategy.</div></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"8 \",\"pages\":\"Article 100086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X24000486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
过渡金属氧化物由于其可调谐的电子结构和丰富的可用性而具有很大的水裂解潜力。然而,它们固有的导电性差和有限的催化活性阻碍了它们的实际应用。本文采用超快速非平衡高温冲击法制备了具有晶粒状结构、表面富氧空位的高熵氧化物(FeCoNiCrCuO)电催化剂。氧空位的引入调节了电子结构,增加了载流子浓度,加快了析氧反应的速率决定步骤,降低了析氧反应的过电位。因此,合成的FeCoNiCrCuO电催化剂在电流密度为10 mA·cm⁻²时的过电位为256 mV,在1 M KOH条件下的Tafel斜率为48.2 mV·dec⁻¹ ,优于退火后缺乏氧空位的样品。本研究提出了一种通过采用高熵氧化物工程策略来提高OER活性的替代方法。
Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction
Transition metal oxides hold great potential for water splitting due to their tunable electronic structures and abundant availability. However, their inherently poor electrical conductivity and limited catalytic activity hinder their practical implementation. Herein, high-entropy oxide (FeCoNiCrCuO) electrocatalysts featuring grain-like structure and oxygen vacancies-enriched surface were synthesized through an ultra-fast non-equilibrium high-temperature shock. The introduction of oxygen vacancies modulates the electronic structure and increases the carrier concentration, accelerating the rate-determining step of the oxygen evolution reactions and reducing the overpotential of oxygen evolution reactions. Consequently, the synthesized FeCoNiCrCuO electrocatalyst delivers a low overpotential of 256 mV at a current density of 10 mA·cm⁻² and a Tafel slope of 48.2 mV·dec⁻¹ in 1 M KOH, which is superior to samples lacking oxygen vacancies after annealing. This study presents an alternative approach to enhancing OER activity by employing a high-entropy oxide engineering strategy.