英国东南部HCHO的时间演变与大气成分的变化

Q1 Environmental Science
Balendra V.S. Chauhan , Kirsty L. Smallbone , Maureen Berg , Kevin P. Wyche
{"title":"英国东南部HCHO的时间演变与大气成分的变化","authors":"Balendra V.S. Chauhan ,&nbsp;Kirsty L. Smallbone ,&nbsp;Maureen Berg ,&nbsp;Kevin P. Wyche","doi":"10.1016/j.cscee.2024.101092","DOIUrl":null,"url":null,"abstract":"<div><div>Formaldehyde (HCHO) is a significant atmospheric pollutant with adverse effects on human and environmental health. This case study investigates seasonal variations in HCHO concentrations and their relationship with tropospheric ozone (O<sub>3</sub>) levels in the Southeast of the United Kingdom. Using hourly data collected from June 2015 to May 2023 at the Brighton Atmospheric Observatory, the research analyzes the interplay between atmospheric chemistry, meteorological parameters, and pollutant transport dynamics. Results reveal pronounced peaks in HCHO concentrations during summer months, reaching up to 9.5–10 μg/m³ around 12:00. This surge is attributed to heightened photochemical activity driven by increased solar radiation and temperatures. Regression analyses demonstrate a strong positive correlation (97 %) between summertime HCHO concentrations and air temperature. Elevated temperatures accelerate VOC oxidation reactions, leading to increased HCHO formation. The study also finds a significant correlation (81 %) between summertime tropospheric O<sub>3</sub> and air temperature. This suggests that higher temperatures enhance photochemical reactions involving O<sub>3</sub> precursors, contributing to elevated O<sub>3</sub> levels. Wind pattern analysis reveals the dominance of southwesterly winds in transporting HCHO throughout the year, with concentrations peaking at wind speeds of 15–20 m/s. During summer, northeastern and easterly winds become more influential in carrying tropospheric O<sub>3</sub>, highlighting seasonal shifts in transport pathways. These findings provide valuable insights into air quality dynamics and underscore the importance of targeted interventions for sustainable air quality management. Understanding the factors influencing HCHO and O<sub>3</sub> concentrations is crucial for developing effective mitigation strategies to protect human and environmental health.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101092"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The temporal evolution of HCHO and changes in atmospheric composition in the southeast of the United Kingdom\",\"authors\":\"Balendra V.S. Chauhan ,&nbsp;Kirsty L. Smallbone ,&nbsp;Maureen Berg ,&nbsp;Kevin P. Wyche\",\"doi\":\"10.1016/j.cscee.2024.101092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Formaldehyde (HCHO) is a significant atmospheric pollutant with adverse effects on human and environmental health. This case study investigates seasonal variations in HCHO concentrations and their relationship with tropospheric ozone (O<sub>3</sub>) levels in the Southeast of the United Kingdom. Using hourly data collected from June 2015 to May 2023 at the Brighton Atmospheric Observatory, the research analyzes the interplay between atmospheric chemistry, meteorological parameters, and pollutant transport dynamics. Results reveal pronounced peaks in HCHO concentrations during summer months, reaching up to 9.5–10 μg/m³ around 12:00. This surge is attributed to heightened photochemical activity driven by increased solar radiation and temperatures. Regression analyses demonstrate a strong positive correlation (97 %) between summertime HCHO concentrations and air temperature. Elevated temperatures accelerate VOC oxidation reactions, leading to increased HCHO formation. The study also finds a significant correlation (81 %) between summertime tropospheric O<sub>3</sub> and air temperature. This suggests that higher temperatures enhance photochemical reactions involving O<sub>3</sub> precursors, contributing to elevated O<sub>3</sub> levels. Wind pattern analysis reveals the dominance of southwesterly winds in transporting HCHO throughout the year, with concentrations peaking at wind speeds of 15–20 m/s. During summer, northeastern and easterly winds become more influential in carrying tropospheric O<sub>3</sub>, highlighting seasonal shifts in transport pathways. These findings provide valuable insights into air quality dynamics and underscore the importance of targeted interventions for sustainable air quality management. Understanding the factors influencing HCHO and O<sub>3</sub> concentrations is crucial for developing effective mitigation strategies to protect human and environmental health.</div></div>\",\"PeriodicalId\":34388,\"journal\":{\"name\":\"Case Studies in Chemical and Environmental Engineering\",\"volume\":\"11 \",\"pages\":\"Article 101092\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Chemical and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666016424004869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016424004869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

甲醛是一种严重危害人类健康和环境健康的大气污染物。本案例研究探讨了英国东南部地区HCHO浓度的季节变化及其与对流层臭氧(O3)水平的关系。利用2015年6月至2023年5月在布莱顿大气观测站收集的每小时数据,该研究分析了大气化学、气象参数和污染物输送动力学之间的相互作用。结果表明,HCHO浓度在夏季达到峰值,在12:00左右达到9.5-10 μg/m³。这种激增归因于太阳辐射和温度增加导致的光化学活动加剧。回归分析表明,夏季HCHO浓度与气温呈正相关(97%)。升高的温度加速VOC氧化反应,导致HCHO形成增加。该研究还发现,夏季对流层O3与气温之间存在显著相关性(81%)。这表明,较高的温度增强了涉及O3前体的光化学反应,导致O3水平升高。风型分析表明,全年以西南风输送HCHO为主,在风速为15 ~ 20 m/s时浓度最高。在夏季,东北风和东风对输送对流层O3的影响更大,突出了输送途径的季节性变化。这些发现为空气质量动力学提供了有价值的见解,并强调了有针对性的干预措施对可持续空气质量管理的重要性。了解影响HCHO和O3浓度的因素对于制定有效的减缓战略以保护人类和环境健康至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The temporal evolution of HCHO and changes in atmospheric composition in the southeast of the United Kingdom
Formaldehyde (HCHO) is a significant atmospheric pollutant with adverse effects on human and environmental health. This case study investigates seasonal variations in HCHO concentrations and their relationship with tropospheric ozone (O3) levels in the Southeast of the United Kingdom. Using hourly data collected from June 2015 to May 2023 at the Brighton Atmospheric Observatory, the research analyzes the interplay between atmospheric chemistry, meteorological parameters, and pollutant transport dynamics. Results reveal pronounced peaks in HCHO concentrations during summer months, reaching up to 9.5–10 μg/m³ around 12:00. This surge is attributed to heightened photochemical activity driven by increased solar radiation and temperatures. Regression analyses demonstrate a strong positive correlation (97 %) between summertime HCHO concentrations and air temperature. Elevated temperatures accelerate VOC oxidation reactions, leading to increased HCHO formation. The study also finds a significant correlation (81 %) between summertime tropospheric O3 and air temperature. This suggests that higher temperatures enhance photochemical reactions involving O3 precursors, contributing to elevated O3 levels. Wind pattern analysis reveals the dominance of southwesterly winds in transporting HCHO throughout the year, with concentrations peaking at wind speeds of 15–20 m/s. During summer, northeastern and easterly winds become more influential in carrying tropospheric O3, highlighting seasonal shifts in transport pathways. These findings provide valuable insights into air quality dynamics and underscore the importance of targeted interventions for sustainable air quality management. Understanding the factors influencing HCHO and O3 concentrations is crucial for developing effective mitigation strategies to protect human and environmental health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信