{"title":"用Ni - Ce@SiO2催化剂干重整甲烷同时利用CO2和CH4:参数化和模拟研究","authors":"Intan Clarissa Sophiana , Soen Steven , Arnetta Revieri , Anisa Permatasari , Riezqa Andika , Norikazu Nishiyama , Bambang Heru Susanto","doi":"10.1016/j.cscee.2024.101078","DOIUrl":null,"url":null,"abstract":"<div><div>The dry reforming of methane (DRM) can reduce CO<sub>2</sub> and CH<sub>4</sub> simultaneously. This study utilized East Natuna gas fields, composed of 70 % CO<sub>2</sub> and 30 % CH<sub>4</sub>, for syngas production via DRM using a Ni–Ce@SiO<sub>2</sub> catalyst. The kinetic parameters employed the Langmuir-Hinshelwood mechanism on the surface reaction as the rate-determining step. The simulation results provided an error margin below 5 %. A CO<sub>2</sub>:CH<sub>4</sub> feed ratio of 70:30 at 700<sup>o</sup>C achieves higher CH<sub>4</sub> conversion than a 50:50 ratio (97.10 % vs. 79.01 %), yet with lower H<sub>2</sub>/CO ratio (0.68 vs. 0.92). Also, higher temperatures impact shorter reactor lengths and swifter times to reach stable conversion.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101078"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous utilization of CO2 and CH4 through dry reforming of methane with Ni–Ce@SiO2 catalyst: Parametric and simulation studies\",\"authors\":\"Intan Clarissa Sophiana , Soen Steven , Arnetta Revieri , Anisa Permatasari , Riezqa Andika , Norikazu Nishiyama , Bambang Heru Susanto\",\"doi\":\"10.1016/j.cscee.2024.101078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dry reforming of methane (DRM) can reduce CO<sub>2</sub> and CH<sub>4</sub> simultaneously. This study utilized East Natuna gas fields, composed of 70 % CO<sub>2</sub> and 30 % CH<sub>4</sub>, for syngas production via DRM using a Ni–Ce@SiO<sub>2</sub> catalyst. The kinetic parameters employed the Langmuir-Hinshelwood mechanism on the surface reaction as the rate-determining step. The simulation results provided an error margin below 5 %. A CO<sub>2</sub>:CH<sub>4</sub> feed ratio of 70:30 at 700<sup>o</sup>C achieves higher CH<sub>4</sub> conversion than a 50:50 ratio (97.10 % vs. 79.01 %), yet with lower H<sub>2</sub>/CO ratio (0.68 vs. 0.92). Also, higher temperatures impact shorter reactor lengths and swifter times to reach stable conversion.</div></div>\",\"PeriodicalId\":34388,\"journal\":{\"name\":\"Case Studies in Chemical and Environmental Engineering\",\"volume\":\"11 \",\"pages\":\"Article 101078\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Chemical and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666016424004729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016424004729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Simultaneous utilization of CO2 and CH4 through dry reforming of methane with Ni–Ce@SiO2 catalyst: Parametric and simulation studies
The dry reforming of methane (DRM) can reduce CO2 and CH4 simultaneously. This study utilized East Natuna gas fields, composed of 70 % CO2 and 30 % CH4, for syngas production via DRM using a Ni–Ce@SiO2 catalyst. The kinetic parameters employed the Langmuir-Hinshelwood mechanism on the surface reaction as the rate-determining step. The simulation results provided an error margin below 5 %. A CO2:CH4 feed ratio of 70:30 at 700oC achieves higher CH4 conversion than a 50:50 ratio (97.10 % vs. 79.01 %), yet with lower H2/CO ratio (0.68 vs. 0.92). Also, higher temperatures impact shorter reactor lengths and swifter times to reach stable conversion.