可生物降解PLA/HEC-ZNO纳米复合材料对ASTM A36钢的腐蚀防护:量子和电化学的结合分析

Q1 Environmental Science
Johny W. Soedarsono , Andoko Andoko , Kuncoro Diharjo , Femiana Gapsari , Sanjay Mavinkere Rangappa , Suchart Siengchin
{"title":"可生物降解PLA/HEC-ZNO纳米复合材料对ASTM A36钢的腐蚀防护:量子和电化学的结合分析","authors":"Johny W. Soedarsono ,&nbsp;Andoko Andoko ,&nbsp;Kuncoro Diharjo ,&nbsp;Femiana Gapsari ,&nbsp;Sanjay Mavinkere Rangappa ,&nbsp;Suchart Siengchin","doi":"10.1016/j.cscee.2024.101039","DOIUrl":null,"url":null,"abstract":"<div><div>The corrosion of ASTM A36 steel in acidic environments poses a critical industrial issue, prompting the need for sustainable inhibitors. This study develops a biodegradable PLA/HEC nanocomposite enhanced with ZnO nanoparticles as an inhibitor. Its performance was evaluated using quantum analysis and electrochemical tests, including Tafel polarization and EIS. Quantum analysis showed ZnO enhances electron donation and acceptance for corrosion protection, while electrochemical findings showed PLA/HEC nanocomposite with 0.05 wt% ZnO achieved 93.98 % inhibition efficiency. PLA/HEC-ZnO nanocomposite has potential for sustainable corrosion protection in steel infrastructure, with future exploration focusing on long-term performance, economic feasibility, and practical application testing. This eco-friendly approach integrates quantum and electrochemical insights to optimize corrosion protection.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101039"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable PLA/HEC-ZNO Nanocomposite for corrosion protection of ASTM A36 steel: A combined quantum and electrochemical analysis\",\"authors\":\"Johny W. Soedarsono ,&nbsp;Andoko Andoko ,&nbsp;Kuncoro Diharjo ,&nbsp;Femiana Gapsari ,&nbsp;Sanjay Mavinkere Rangappa ,&nbsp;Suchart Siengchin\",\"doi\":\"10.1016/j.cscee.2024.101039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The corrosion of ASTM A36 steel in acidic environments poses a critical industrial issue, prompting the need for sustainable inhibitors. This study develops a biodegradable PLA/HEC nanocomposite enhanced with ZnO nanoparticles as an inhibitor. Its performance was evaluated using quantum analysis and electrochemical tests, including Tafel polarization and EIS. Quantum analysis showed ZnO enhances electron donation and acceptance for corrosion protection, while electrochemical findings showed PLA/HEC nanocomposite with 0.05 wt% ZnO achieved 93.98 % inhibition efficiency. PLA/HEC-ZnO nanocomposite has potential for sustainable corrosion protection in steel infrastructure, with future exploration focusing on long-term performance, economic feasibility, and practical application testing. This eco-friendly approach integrates quantum and electrochemical insights to optimize corrosion protection.</div></div>\",\"PeriodicalId\":34388,\"journal\":{\"name\":\"Case Studies in Chemical and Environmental Engineering\",\"volume\":\"11 \",\"pages\":\"Article 101039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Chemical and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266601642400433X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266601642400433X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

ASTM A36钢在酸性环境中的腐蚀是一个关键的工业问题,促使需要可持续的抑制剂。本研究开发了一种以ZnO纳米颗粒为抑制剂的可生物降解PLA/HEC纳米复合材料。通过量子分析和电化学测试,包括塔菲尔极化和EIS,对其性能进行了评价。量子分析表明,ZnO增强了PLA/HEC纳米复合材料的电子给予和电子接受,电化学结果表明,0.05 wt% ZnO的PLA/HEC纳米复合材料的缓蚀效率为93.98%。PLA/HEC-ZnO纳米复合材料在钢铁基础设施中具有可持续防腐的潜力,未来的探索重点是长期性能、经济可行性和实际应用测试。这种环保的方法集成了量子和电化学的见解,以优化腐蚀保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodegradable PLA/HEC-ZNO Nanocomposite for corrosion protection of ASTM A36 steel: A combined quantum and electrochemical analysis
The corrosion of ASTM A36 steel in acidic environments poses a critical industrial issue, prompting the need for sustainable inhibitors. This study develops a biodegradable PLA/HEC nanocomposite enhanced with ZnO nanoparticles as an inhibitor. Its performance was evaluated using quantum analysis and electrochemical tests, including Tafel polarization and EIS. Quantum analysis showed ZnO enhances electron donation and acceptance for corrosion protection, while electrochemical findings showed PLA/HEC nanocomposite with 0.05 wt% ZnO achieved 93.98 % inhibition efficiency. PLA/HEC-ZnO nanocomposite has potential for sustainable corrosion protection in steel infrastructure, with future exploration focusing on long-term performance, economic feasibility, and practical application testing. This eco-friendly approach integrates quantum and electrochemical insights to optimize corrosion protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信