增材制造Ti-6Al-4V的阻尼和疲劳特性研究

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Peyton J. Wilson , Elaheh Azizian-Farsani , Mikyle Paul , Michael M. Khonsari , Shuai Shao , Nima Shamsaei
{"title":"增材制造Ti-6Al-4V的阻尼和疲劳特性研究","authors":"Peyton J. Wilson ,&nbsp;Elaheh Azizian-Farsani ,&nbsp;Mikyle Paul ,&nbsp;Michael M. Khonsari ,&nbsp;Shuai Shao ,&nbsp;Nima Shamsaei","doi":"10.1016/j.addlet.2024.100260","DOIUrl":null,"url":null,"abstract":"<div><div>With the recent implementation of additively manufactured parts into industrial applications, there is a dire need for nondestructive evaluation methods to qualify if these components are fit for service due to their sensitivity to processing conditions. The Impulse Excitation Technique (IET) is applied to additively manufactured Ti-6Al-4V bending specimens to determine natural frequencies and damping properties in order to predict fatigue performance relative to specimens fabricated with different processing parameters. From the damping and natural frequency results, it was found that the specimens, fabricated with intentional underheating to induce lack of fusion defects, had the lowest damping value in the pristine condition and the highest natural frequency. For the three batches of specimens tested, it was determined that the underheated specimens had the best fully-reversed bending fatigue performance with the highest fatigue limit (297 MPa) and longest fatigue lives as compared to the other two batches, implying a relation of decreased fatigue life with increased material damping in the pristine condition. The theory of the IET related to materials is presented with damping and fatigue results, as well as microstructural analysis and fractography of three specimens batches fabricated with different processing parameters.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"11 ","pages":"Article 100260"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the damping and fatigue characterization of additively manufactured Ti-6Al-4V\",\"authors\":\"Peyton J. Wilson ,&nbsp;Elaheh Azizian-Farsani ,&nbsp;Mikyle Paul ,&nbsp;Michael M. Khonsari ,&nbsp;Shuai Shao ,&nbsp;Nima Shamsaei\",\"doi\":\"10.1016/j.addlet.2024.100260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the recent implementation of additively manufactured parts into industrial applications, there is a dire need for nondestructive evaluation methods to qualify if these components are fit for service due to their sensitivity to processing conditions. The Impulse Excitation Technique (IET) is applied to additively manufactured Ti-6Al-4V bending specimens to determine natural frequencies and damping properties in order to predict fatigue performance relative to specimens fabricated with different processing parameters. From the damping and natural frequency results, it was found that the specimens, fabricated with intentional underheating to induce lack of fusion defects, had the lowest damping value in the pristine condition and the highest natural frequency. For the three batches of specimens tested, it was determined that the underheated specimens had the best fully-reversed bending fatigue performance with the highest fatigue limit (297 MPa) and longest fatigue lives as compared to the other two batches, implying a relation of decreased fatigue life with increased material damping in the pristine condition. The theory of the IET related to materials is presented with damping and fatigue results, as well as microstructural analysis and fractography of three specimens batches fabricated with different processing parameters.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"11 \",\"pages\":\"Article 100260\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

随着最近增材制造部件在工业应用中的应用,由于这些部件对加工条件的敏感性,迫切需要一种无损评估方法来确定它们是否适合使用。将脉冲激励技术(IET)应用于增材制造的Ti-6Al-4V弯曲试样,测定其固有频率和阻尼特性,以预测不同工艺参数制备的试样的疲劳性能。从阻尼和固有频率的结果可以看出,故意欠加热以减少熔合缺陷的试样在原始状态下的阻尼值最低,固有频率最高。试验结果表明,与其他两批试样相比,欠加热试样具有最佳的完全反向弯曲疲劳性能,具有最高的疲劳极限(297 MPa)和最长的疲劳寿命,这表明在原始状态下,疲劳寿命随着材料阻尼的增加而降低。通过对三批不同工艺参数试样的阻尼、疲劳、显微组织分析和断口形貌分析,提出了与材料相关的IET理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the damping and fatigue characterization of additively manufactured Ti-6Al-4V
With the recent implementation of additively manufactured parts into industrial applications, there is a dire need for nondestructive evaluation methods to qualify if these components are fit for service due to their sensitivity to processing conditions. The Impulse Excitation Technique (IET) is applied to additively manufactured Ti-6Al-4V bending specimens to determine natural frequencies and damping properties in order to predict fatigue performance relative to specimens fabricated with different processing parameters. From the damping and natural frequency results, it was found that the specimens, fabricated with intentional underheating to induce lack of fusion defects, had the lowest damping value in the pristine condition and the highest natural frequency. For the three batches of specimens tested, it was determined that the underheated specimens had the best fully-reversed bending fatigue performance with the highest fatigue limit (297 MPa) and longest fatigue lives as compared to the other two batches, implying a relation of decreased fatigue life with increased material damping in the pristine condition. The theory of the IET related to materials is presented with damping and fatigue results, as well as microstructural analysis and fractography of three specimens batches fabricated with different processing parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信