不同土壤含水量下垂直荷载对轨道牵引力的影响

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Zhuohuai Guan, Dong Jiang, Min Zhang, Mei Jin, Haitong Li, Tao Jiang
{"title":"不同土壤含水量下垂直荷载对轨道牵引力的影响","authors":"Zhuohuai Guan,&nbsp;Dong Jiang,&nbsp;Min Zhang,&nbsp;Mei Jin,&nbsp;Haitong Li,&nbsp;Tao Jiang","doi":"10.1016/j.jterra.2024.101044","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensive analysis of the tractive performance is central to the design of tracked agriculture vehicles, particularly in challenging terrain conditions. To assess the effect of altering the track traction, the stress state of the track plate and grousers were analyzed based on the terramechanics. A simulation model based on the discrete element method (DEM) was proposed to explore the displacement of soil particles and stress distribution within the soil. Subsequently, a test bench was developed to investigate the effect of vertical load, soil moisture content, and grouser height on the maximum track traction. The results demonstrated that DEM simulation could reproduce the experimental results sufficiently well with a relative error of 3.5 % for maximum traction. The highest vertical stress is located beneath the grousers and the horizontal stresses are found to be higher near the bottom of the grousers. The vertical load exerts the most significant influence on track traction. Moisture content mainly affects the rate of increase in track traction at different vertical loads. At the moisture contents of 10 % and 15 %, and under vertical loads of 1000 N and 1500 N, the grouser height had little impact on maximum traction. However, at a soil moisture content of 25 % and under vertical loads of 2500 N and 3000 N, increasing the grouser height resulted in a notable enhancement of track traction.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"118 ","pages":"Article 101044"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of vertical load on track traction under different soil moisture content\",\"authors\":\"Zhuohuai Guan,&nbsp;Dong Jiang,&nbsp;Min Zhang,&nbsp;Mei Jin,&nbsp;Haitong Li,&nbsp;Tao Jiang\",\"doi\":\"10.1016/j.jterra.2024.101044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Comprehensive analysis of the tractive performance is central to the design of tracked agriculture vehicles, particularly in challenging terrain conditions. To assess the effect of altering the track traction, the stress state of the track plate and grousers were analyzed based on the terramechanics. A simulation model based on the discrete element method (DEM) was proposed to explore the displacement of soil particles and stress distribution within the soil. Subsequently, a test bench was developed to investigate the effect of vertical load, soil moisture content, and grouser height on the maximum track traction. The results demonstrated that DEM simulation could reproduce the experimental results sufficiently well with a relative error of 3.5 % for maximum traction. The highest vertical stress is located beneath the grousers and the horizontal stresses are found to be higher near the bottom of the grousers. The vertical load exerts the most significant influence on track traction. Moisture content mainly affects the rate of increase in track traction at different vertical loads. At the moisture contents of 10 % and 15 %, and under vertical loads of 1000 N and 1500 N, the grouser height had little impact on maximum traction. However, at a soil moisture content of 25 % and under vertical loads of 2500 N and 3000 N, increasing the grouser height resulted in a notable enhancement of track traction.</div></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"118 \",\"pages\":\"Article 101044\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000867\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000867","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

对牵引性能的综合分析是履带式农业车辆设计的核心,特别是在具有挑战性的地形条件下。为了评估改变履带牵引力的效果,基于地形力学分析了履带板和履带的受力状态。提出了一种基于离散元法(DEM)的模拟模型来研究土粒的位移和土内应力分布。随后,建立了一个试验平台,研究了垂直荷载、土壤含水量和土鼠高度对最大轨道牵引力的影响。结果表明,DEM模拟可以很好地再现实验结果,最大牵引力的相对误差为3.5%。竖向应力最高的位置在土槽下方,水平应力在土槽底部附近较高。竖向荷载对轨道牵引力的影响最为显著。在不同垂直荷载作用下,含水率主要影响轨道牵引力的增加速率。在含水率为10%和15%,垂直荷载为1000 N和1500 N时,草身高对最大牵引力影响不大。而在土壤含水量为25%时,在2500 N和3000 N的垂直荷载下,增加土鼠高度可显著增强履带牵引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of vertical load on track traction under different soil moisture content
Comprehensive analysis of the tractive performance is central to the design of tracked agriculture vehicles, particularly in challenging terrain conditions. To assess the effect of altering the track traction, the stress state of the track plate and grousers were analyzed based on the terramechanics. A simulation model based on the discrete element method (DEM) was proposed to explore the displacement of soil particles and stress distribution within the soil. Subsequently, a test bench was developed to investigate the effect of vertical load, soil moisture content, and grouser height on the maximum track traction. The results demonstrated that DEM simulation could reproduce the experimental results sufficiently well with a relative error of 3.5 % for maximum traction. The highest vertical stress is located beneath the grousers and the horizontal stresses are found to be higher near the bottom of the grousers. The vertical load exerts the most significant influence on track traction. Moisture content mainly affects the rate of increase in track traction at different vertical loads. At the moisture contents of 10 % and 15 %, and under vertical loads of 1000 N and 1500 N, the grouser height had little impact on maximum traction. However, at a soil moisture content of 25 % and under vertical loads of 2500 N and 3000 N, increasing the grouser height resulted in a notable enhancement of track traction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信