IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mirlan Jussambayev , Kalizhan Shakenov , Shynggyskhan Sultakhan , Ulan Zhantikeyev , Kydyr Askaruly , Kainaubek Toshtay , Seitkhan Azat
{"title":"MXenes for sustainable energy: A comprehensive review on conservation and storage applications","authors":"Mirlan Jussambayev ,&nbsp;Kalizhan Shakenov ,&nbsp;Shynggyskhan Sultakhan ,&nbsp;Ulan Zhantikeyev ,&nbsp;Kydyr Askaruly ,&nbsp;Kainaubek Toshtay ,&nbsp;Seitkhan Azat","doi":"10.1016/j.cartre.2025.100471","DOIUrl":null,"url":null,"abstract":"<div><div>This review explores the potential of MXenes, a novel class of two-dimensional (2D) materials, in advancing energy storage and conservation technologies. MXenes exhibit exceptional physicochemical properties, including a high specific surface area (∼390 m² g⁻¹ for MXene@PPy-800), outstanding electrical conductivity, and robust chemical stability, making them ideal for energy-related applications. In supercapacitors, MXene-based electrodes have demonstrated capacitances exceeding 700 F g⁻¹ at 1 mV s⁻¹, with retention of over 90 % of their initial performance after 10,000 charge/discharge cycles. For lithium-ion batteries, MXenes achieve theoretical capacities ranging from 390 to 600 mAh g⁻¹, depending on the type of MXene material, with experimental reversible capacities often exceeding 400 mAh g⁻¹ at 1C rates and high cycling stability.</div><div>This review synthesizes recent research efforts on the synthesis, structural characterization, and integration of MXenes into energy storage systems. Findings highlight their versatility as electrode materials for supercapacitors, lithium-ion batteries, and fuel cells, as well as their catalytic potential in solar energy conversion. Despite these advancements, challenges remain unresolved. Scalability of MXene synthesis through selective etching methods continues to be a significant technical and economic barrier. Moreover, while MXene-based devices show high initial performance, further work is needed to improve long-term stability in operational and harsh chemical environments.</div><div>By providing a comprehensive overview of MXene-based energy systems, this review identifies critical gaps in understanding their electrochemical mechanisms, particularly ion transport and surface interaction dynamics. Addressing these challenges will be key to optimizing MXene properties and enabling their widespread application in efficient and sustainable energy technologies.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100471"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了一类新型二维(2D)材料MXenes在推进储能和节能技术方面的潜力。MXenes具有优异的物理化学特性,包括高比表面积(MXene@PPy-800为~ 390 m²g⁻¹),出色的导电性和强大的化学稳定性,使其成为能源相关应用的理想选择。在超级电容器方面,以mxene为基础的电极在1 mV s(⁻¹)下的电容超过700 F(⁻¹),在10,000次充放电循环后,其初始性能保持在90%以上。对于锂离子电池,根据MXene材料的类型,MXene的理论容量在390到600毫安时(毒血症)之间,实验可逆容量通常超过400毫安时(毒血症),并且具有很高的循环稳定性。本文综述了近年来在MXenes的合成、结构表征以及与储能系统集成方面的研究成果。研究结果强调了它们作为超级电容器、锂离子电池和燃料电池电极材料的多功能性,以及它们在太阳能转换方面的催化潜力。尽管取得了这些进展,但挑战仍未解决。通过选择性蚀刻方法合成MXene的可扩展性仍然是一个重大的技术和经济障碍。此外,虽然基于mxene的设备显示出很高的初始性能,但需要进一步的工作来提高在操作和恶劣化学环境中的长期稳定性。通过对基于mxene的能量系统的全面概述,本文确定了在理解其电化学机制方面的关键空白,特别是离子传输和表面相互作用动力学。解决这些挑战将是优化MXene性能并使其在高效和可持续能源技术中得到广泛应用的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MXenes for sustainable energy: A comprehensive review on conservation and storage applications

MXenes for sustainable energy: A comprehensive review on conservation and storage applications
This review explores the potential of MXenes, a novel class of two-dimensional (2D) materials, in advancing energy storage and conservation technologies. MXenes exhibit exceptional physicochemical properties, including a high specific surface area (∼390 m² g⁻¹ for MXene@PPy-800), outstanding electrical conductivity, and robust chemical stability, making them ideal for energy-related applications. In supercapacitors, MXene-based electrodes have demonstrated capacitances exceeding 700 F g⁻¹ at 1 mV s⁻¹, with retention of over 90 % of their initial performance after 10,000 charge/discharge cycles. For lithium-ion batteries, MXenes achieve theoretical capacities ranging from 390 to 600 mAh g⁻¹, depending on the type of MXene material, with experimental reversible capacities often exceeding 400 mAh g⁻¹ at 1C rates and high cycling stability.
This review synthesizes recent research efforts on the synthesis, structural characterization, and integration of MXenes into energy storage systems. Findings highlight their versatility as electrode materials for supercapacitors, lithium-ion batteries, and fuel cells, as well as their catalytic potential in solar energy conversion. Despite these advancements, challenges remain unresolved. Scalability of MXene synthesis through selective etching methods continues to be a significant technical and economic barrier. Moreover, while MXene-based devices show high initial performance, further work is needed to improve long-term stability in operational and harsh chemical environments.
By providing a comprehensive overview of MXene-based energy systems, this review identifies critical gaps in understanding their electrochemical mechanisms, particularly ion transport and surface interaction dynamics. Addressing these challenges will be key to optimizing MXene properties and enabling their widespread application in efficient and sustainable energy technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信