一步简易合成法将磁性纳米颗粒包封在碳纳米管中

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
José D. Pizha , Diana G. Heredia , Luis Corredor , Carlos Reinoso , Werner Bramer , Jules Gardener , Guillermo Solorzano , Gema Gonzalez
{"title":"一步简易合成法将磁性纳米颗粒包封在碳纳米管中","authors":"José D. Pizha ,&nbsp;Diana G. Heredia ,&nbsp;Luis Corredor ,&nbsp;Carlos Reinoso ,&nbsp;Werner Bramer ,&nbsp;Jules Gardener ,&nbsp;Guillermo Solorzano ,&nbsp;Gema Gonzalez","doi":"10.1016/j.cartre.2024.100446","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic carbon nanotubes (MagCNTs) have attracted significant interest due to their exceptional magnetic properties, robust adsorption capabilities, and unique thermal conductivity, making them valuable in fields such as drug delivery and environmental technology. However, their production and design face challenges due to complex methodologies and the exposure of magnetic nanoparticles (NPs) to the environment, which hinders scalability and compromises their applications. Issues like rapid oxidation of iron-based NPs and potential toxicity of alternative metals like cobalt or nickel further limit their efficacy and utility. To address these challenges, encapsulating the metallic NPs can preserve their magnetic properties and enhance application options. In this study, we introduce a novel, <em>in-situ</em>, one-step synthesis method to encapsulate magnetic NPs, such as Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, Fe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C, within the structure of carbon nanotubes (CNTs). The material was synthesized <em>via</em> Chemical Vapor Deposition (CVD) using Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> NPs as the catalyst. The composition and morphology were studied using High Resolution Transmission Electron Microscopy (HRTEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and vibrating sample magnetometry (VSM). These analysis revealed the effective confinement of magnetic NPs, with size approximately 10–20 nm, within the CNTs. Furthermore, VSM results confirmed the magnetic properties at room temperature, with a magnetic saturation value of 35.8 emu/g. This approach offers a refined production process and material design, expanding their applicability in various technological and biomedical fields.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100446"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encapsulation of magnetic nanoparticles into carbon nanotubes by one-step facile synthesis method\",\"authors\":\"José D. Pizha ,&nbsp;Diana G. Heredia ,&nbsp;Luis Corredor ,&nbsp;Carlos Reinoso ,&nbsp;Werner Bramer ,&nbsp;Jules Gardener ,&nbsp;Guillermo Solorzano ,&nbsp;Gema Gonzalez\",\"doi\":\"10.1016/j.cartre.2024.100446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic carbon nanotubes (MagCNTs) have attracted significant interest due to their exceptional magnetic properties, robust adsorption capabilities, and unique thermal conductivity, making them valuable in fields such as drug delivery and environmental technology. However, their production and design face challenges due to complex methodologies and the exposure of magnetic nanoparticles (NPs) to the environment, which hinders scalability and compromises their applications. Issues like rapid oxidation of iron-based NPs and potential toxicity of alternative metals like cobalt or nickel further limit their efficacy and utility. To address these challenges, encapsulating the metallic NPs can preserve their magnetic properties and enhance application options. In this study, we introduce a novel, <em>in-situ</em>, one-step synthesis method to encapsulate magnetic NPs, such as Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, Fe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C, within the structure of carbon nanotubes (CNTs). The material was synthesized <em>via</em> Chemical Vapor Deposition (CVD) using Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> NPs as the catalyst. The composition and morphology were studied using High Resolution Transmission Electron Microscopy (HRTEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and vibrating sample magnetometry (VSM). These analysis revealed the effective confinement of magnetic NPs, with size approximately 10–20 nm, within the CNTs. Furthermore, VSM results confirmed the magnetic properties at room temperature, with a magnetic saturation value of 35.8 emu/g. This approach offers a refined production process and material design, expanding their applicability in various technological and biomedical fields.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"19 \",\"pages\":\"Article 100446\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924001251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性碳纳米管(MagCNTs)由于其特殊的磁性、强大的吸附能力和独特的导热性而引起了人们的极大兴趣,使其在药物输送和环境技术等领域具有重要价值。然而,由于复杂的方法和磁性纳米颗粒(NPs)暴露于环境中,它们的生产和设计面临挑战,这阻碍了可扩展性并危及其应用。诸如铁基NPs的快速氧化和钴或镍等替代金属的潜在毒性等问题进一步限制了它们的功效和实用性。为了应对这些挑战,封装金属NPs可以保持其磁性并增加应用选择。在这项研究中,我们介绍了一种新的原位一步合成方法,将磁性NPs(如Fe3O4, Fe和Fe3C)封装在碳纳米管(CNTs)的结构中。采用化学气相沉积法(CVD),以Fe3O4 NPs为催化剂合成了该材料。采用高分辨率透射电镜(HRTEM)、能量色散x射线能谱(EDS)、拉曼光谱(Raman)、x射线衍射(XRD)、x射线光电子能谱(XPS)、热重分析(TGA)和振动样品磁强计(VSM)研究了其组成和形貌。这些分析揭示了在碳纳米管中有效地限制了磁性纳米粒子,其尺寸约为10-20 nm。此外,VSM结果证实了室温下的磁性能,磁饱和值为35.8 emu/g。这种方法提供了一种精细的生产工艺和材料设计,扩大了它们在各种技术和生物医学领域的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encapsulation of magnetic nanoparticles into carbon nanotubes by one-step facile synthesis method
Magnetic carbon nanotubes (MagCNTs) have attracted significant interest due to their exceptional magnetic properties, robust adsorption capabilities, and unique thermal conductivity, making them valuable in fields such as drug delivery and environmental technology. However, their production and design face challenges due to complex methodologies and the exposure of magnetic nanoparticles (NPs) to the environment, which hinders scalability and compromises their applications. Issues like rapid oxidation of iron-based NPs and potential toxicity of alternative metals like cobalt or nickel further limit their efficacy and utility. To address these challenges, encapsulating the metallic NPs can preserve their magnetic properties and enhance application options. In this study, we introduce a novel, in-situ, one-step synthesis method to encapsulate magnetic NPs, such as Fe3O4, Fe, and Fe3C, within the structure of carbon nanotubes (CNTs). The material was synthesized via Chemical Vapor Deposition (CVD) using Fe3O4 NPs as the catalyst. The composition and morphology were studied using High Resolution Transmission Electron Microscopy (HRTEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and vibrating sample magnetometry (VSM). These analysis revealed the effective confinement of magnetic NPs, with size approximately 10–20 nm, within the CNTs. Furthermore, VSM results confirmed the magnetic properties at room temperature, with a magnetic saturation value of 35.8 emu/g. This approach offers a refined production process and material design, expanding their applicability in various technological and biomedical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信