加厚曲面中连杆的端基本跨越曲面

IF 0.6 4区 数学 Q3 MATHEMATICS
Thomas Kindred
{"title":"加厚曲面中连杆的端基本跨越曲面","authors":"Thomas Kindred","doi":"10.1016/j.topol.2024.109187","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> be a cellular alternating link diagram on a closed orientable surface Σ. We prove that if <em>D</em> has no removable nugatory crossings then each checkerboard surface from <em>D</em> is <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-essential and contains no essential closed curve that is ∂-parallel in <span><math><mi>Σ</mi><mo>×</mo><mi>I</mi></math></span>. Our chief motivation comes from technical aspects of a companion paper, where we prove that Tait's flyping conjecture holds for alternating virtual links. We also describe possible applications via Turaev surfaces.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"361 ","pages":"Article 109187"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-essential spanning surfaces for links in thickened surfaces\",\"authors\":\"Thomas Kindred\",\"doi\":\"10.1016/j.topol.2024.109187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>D</em> be a cellular alternating link diagram on a closed orientable surface Σ. We prove that if <em>D</em> has no removable nugatory crossings then each checkerboard surface from <em>D</em> is <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-essential and contains no essential closed curve that is ∂-parallel in <span><math><mi>Σ</mi><mo>×</mo><mi>I</mi></math></span>. Our chief motivation comes from technical aspects of a companion paper, where we prove that Tait's flyping conjecture holds for alternating virtual links. We also describe possible applications via Turaev surfaces.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"361 \",\"pages\":\"Article 109187\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124003729\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003729","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设D为闭合可定向曲面Σ上的元胞交替连杆图。我们证明如果D没有可移动的核交叉点,那么D的每个棋盘表面都是π -必要的,并且不包含在Σ×I中∂-平行的必要闭曲线。我们的主要动机来自于另一篇论文的技术方面,在这篇论文中,我们证明了Tait的飞行猜想适用于交替的虚拟链路。我们还描述了通过图拉耶夫表面的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-essential spanning surfaces for links in thickened surfaces
Let D be a cellular alternating link diagram on a closed orientable surface Σ. We prove that if D has no removable nugatory crossings then each checkerboard surface from D is π1-essential and contains no essential closed curve that is ∂-parallel in Σ×I. Our chief motivation comes from technical aspects of a companion paper, where we prove that Tait's flyping conjecture holds for alternating virtual links. We also describe possible applications via Turaev surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信