通过ph调生物聚合物水凝胶在近中性电解质中增强锌-空气电池的性能

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sara Vaca-Chacón , Vivian Morera Córdova , José Béjar , Lorena Álvarez-Contreras , Juan P. Tafur
{"title":"通过ph调生物聚合物水凝胶在近中性电解质中增强锌-空气电池的性能","authors":"Sara Vaca-Chacón ,&nbsp;Vivian Morera Córdova ,&nbsp;José Béjar ,&nbsp;Lorena Álvarez-Contreras ,&nbsp;Juan P. Tafur","doi":"10.1016/j.cartre.2025.100462","DOIUrl":null,"url":null,"abstract":"<div><div>In light of the escalating global energy demands and the critical pursuit of sustainable energy solutions, this research delves into the electrolytic behavior of biopolymeric hydrogels derived from chitosan and starch in near-neutral ionic solutions within a ZnCl<sub>2</sub> + NH<sub>4</sub>Cl system, evaluated at different pH values to enhance zinc-air battery (ZAB) performance. The study evaluates the impact of ionic solution pH on the structural, morphological, thermal, mechanical, and electrochemical properties of the hydrogels in primary ZAB prototypes. Remarkably, at a near-neutral pH of 7, the polymer gel electrolyte demonstrated superior ionic conductivity (0.11 S·cm<sup>−1</sup>), specific capacity (675 mAh·g<sup>−1</sup>), lower volume resistances and higher specific capacitances. Thermal analysis revealed increased stability of the polymer gel systems at elevated pH levels. This finding was corroborated by Scanning Electron Microscopy (SEM), which evidenced the presence of uniform and cohesive microstructures attributed to the formation of stable zinc-amine complexes. Fourier Transform Infrared Spectroscopy (FTIR) indicated pH-dependent variations in the vibrational bands of functional groups, influencing zinc ion interactions and electrochemical performance. X-ray diffraction (XRD) analysis revealed the absence of solid precipitates at pH 7, which enhances ionic mobility and conductivity. Consequently, the findings suggest that maintaining near neutral pH conditions substantially enhances the physical and electrochemical properties of ZAB. Hence, the proposed system constitutes a promising avenue for sustainable energy storage solutions.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100462"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing zinc-air battery performance through ph-tuned biopolymeric hydrogels in near-neutral electrolytes\",\"authors\":\"Sara Vaca-Chacón ,&nbsp;Vivian Morera Córdova ,&nbsp;José Béjar ,&nbsp;Lorena Álvarez-Contreras ,&nbsp;Juan P. Tafur\",\"doi\":\"10.1016/j.cartre.2025.100462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In light of the escalating global energy demands and the critical pursuit of sustainable energy solutions, this research delves into the electrolytic behavior of biopolymeric hydrogels derived from chitosan and starch in near-neutral ionic solutions within a ZnCl<sub>2</sub> + NH<sub>4</sub>Cl system, evaluated at different pH values to enhance zinc-air battery (ZAB) performance. The study evaluates the impact of ionic solution pH on the structural, morphological, thermal, mechanical, and electrochemical properties of the hydrogels in primary ZAB prototypes. Remarkably, at a near-neutral pH of 7, the polymer gel electrolyte demonstrated superior ionic conductivity (0.11 S·cm<sup>−1</sup>), specific capacity (675 mAh·g<sup>−1</sup>), lower volume resistances and higher specific capacitances. Thermal analysis revealed increased stability of the polymer gel systems at elevated pH levels. This finding was corroborated by Scanning Electron Microscopy (SEM), which evidenced the presence of uniform and cohesive microstructures attributed to the formation of stable zinc-amine complexes. Fourier Transform Infrared Spectroscopy (FTIR) indicated pH-dependent variations in the vibrational bands of functional groups, influencing zinc ion interactions and electrochemical performance. X-ray diffraction (XRD) analysis revealed the absence of solid precipitates at pH 7, which enhances ionic mobility and conductivity. Consequently, the findings suggest that maintaining near neutral pH conditions substantially enhances the physical and electrochemical properties of ZAB. Hence, the proposed system constitutes a promising avenue for sustainable energy storage solutions.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"19 \",\"pages\":\"Article 100462\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056925000124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

鉴于全球不断增长的能源需求和对可持续能源解决方案的关键追求,本研究深入研究了壳聚糖和淀粉在近中性离子溶液中ZnCl2 + NH4Cl体系中的生物聚合物水凝胶的电解行为,并在不同的pH值下进行了评估,以提高锌空气电池(ZAB)的性能。该研究评估了离子溶液pH值对初级ZAB原型水凝胶的结构、形态、热、机械和电化学性能的影响。值得注意的是,在接近中性的pH为7时,聚合物凝胶电解质表现出优异的离子电导率(0.11 S·cm−1)、比容量(675 mAh·g−1)、更低的体积电阻和更高的比电容。热分析表明,在较高的pH值下,聚合物凝胶体系的稳定性增加。扫描电镜(SEM)证实了这一发现,这证明了由于形成稳定的锌胺配合物而存在均匀和内聚的微观结构。傅里叶变换红外光谱(FTIR)显示了官能团的振动带随ph的变化,影响锌离子的相互作用和电化学性能。x射线衍射(XRD)分析表明,在pH为7时没有固体沉淀,这增强了离子迁移率和电导率。因此,研究结果表明,保持接近中性的pH条件大大提高了ZAB的物理和电化学性能。因此,所提出的系统构成了可持续能源存储解决方案的有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing zinc-air battery performance through ph-tuned biopolymeric hydrogels in near-neutral electrolytes
In light of the escalating global energy demands and the critical pursuit of sustainable energy solutions, this research delves into the electrolytic behavior of biopolymeric hydrogels derived from chitosan and starch in near-neutral ionic solutions within a ZnCl2 + NH4Cl system, evaluated at different pH values to enhance zinc-air battery (ZAB) performance. The study evaluates the impact of ionic solution pH on the structural, morphological, thermal, mechanical, and electrochemical properties of the hydrogels in primary ZAB prototypes. Remarkably, at a near-neutral pH of 7, the polymer gel electrolyte demonstrated superior ionic conductivity (0.11 S·cm−1), specific capacity (675 mAh·g−1), lower volume resistances and higher specific capacitances. Thermal analysis revealed increased stability of the polymer gel systems at elevated pH levels. This finding was corroborated by Scanning Electron Microscopy (SEM), which evidenced the presence of uniform and cohesive microstructures attributed to the formation of stable zinc-amine complexes. Fourier Transform Infrared Spectroscopy (FTIR) indicated pH-dependent variations in the vibrational bands of functional groups, influencing zinc ion interactions and electrochemical performance. X-ray diffraction (XRD) analysis revealed the absence of solid precipitates at pH 7, which enhances ionic mobility and conductivity. Consequently, the findings suggest that maintaining near neutral pH conditions substantially enhances the physical and electrochemical properties of ZAB. Hence, the proposed system constitutes a promising avenue for sustainable energy storage solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信