概率矩计算的二次点估计方法

IF 3.5 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Minhyeok Ko, Konstantinos G. Papakonstantinou
{"title":"概率矩计算的二次点估计方法","authors":"Minhyeok Ko,&nbsp;Konstantinos G. Papakonstantinou","doi":"10.1016/j.probengmech.2024.103705","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents in detail the originally developed Quadratic Point Estimate Method (QPEM), aimed at efficiently and accurately computing the first four output moments of probabilistic distributions, using <span><math><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></math></span> sample (or sigma) points, with <span><math><mi>n</mi></math></span>, the number of input random variables. The proposed QPEM particularly offers an effective, superior, and practical alternative to existing sampling and quadrature methods for low- and moderately-high-dimensional problems. Detailed theoretical derivations are provided proving that the proposed method can achieve a fifth or higher-order accuracy for symmetric input distributions. Various numerical examples, from simple polynomial functions to nonlinear finite element analyses with random field representations, support the theoretical findings and further showcase the validity, efficiency, and applicability of the QPEM, from low- to high-dimensional problems.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"79 ","pages":"Article 103705"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic point estimate method for probabilistic moments computation\",\"authors\":\"Minhyeok Ko,&nbsp;Konstantinos G. Papakonstantinou\",\"doi\":\"10.1016/j.probengmech.2024.103705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents in detail the originally developed Quadratic Point Estimate Method (QPEM), aimed at efficiently and accurately computing the first four output moments of probabilistic distributions, using <span><math><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></math></span> sample (or sigma) points, with <span><math><mi>n</mi></math></span>, the number of input random variables. The proposed QPEM particularly offers an effective, superior, and practical alternative to existing sampling and quadrature methods for low- and moderately-high-dimensional problems. Detailed theoretical derivations are provided proving that the proposed method can achieve a fifth or higher-order accuracy for symmetric input distributions. Various numerical examples, from simple polynomial functions to nonlinear finite element analyses with random field representations, support the theoretical findings and further showcase the validity, efficiency, and applicability of the QPEM, from low- to high-dimensional problems.</div></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"79 \",\"pages\":\"Article 103705\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024001279\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001279","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文详细介绍了最初开发的二次点估计方法(Quadratic Point Estimate Method, QPEM),其目的是高效准确地计算概率分布的前四个输出矩,使用2n2+1个样本(或sigma)点,输入随机变量的数量为n。所提出的QPEM特别为现有的低维和中高维问题的采样和正交方法提供了一种有效、优越和实用的替代方法。详细的理论推导证明了该方法对对称输入分布可以达到五阶或更高阶的精度。从简单的多项式函数到具有随机场表示的非线性有限元分析,各种数值例子都支持了理论发现,并进一步展示了从低维到高维问题的QPEM的有效性、效率和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic point estimate method for probabilistic moments computation
This paper presents in detail the originally developed Quadratic Point Estimate Method (QPEM), aimed at efficiently and accurately computing the first four output moments of probabilistic distributions, using 2n2+1 sample (or sigma) points, with n, the number of input random variables. The proposed QPEM particularly offers an effective, superior, and practical alternative to existing sampling and quadrature methods for low- and moderately-high-dimensional problems. Detailed theoretical derivations are provided proving that the proposed method can achieve a fifth or higher-order accuracy for symmetric input distributions. Various numerical examples, from simple polynomial functions to nonlinear finite element analyses with random field representations, support the theoretical findings and further showcase the validity, efficiency, and applicability of the QPEM, from low- to high-dimensional problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信