正齿轮与非圆(方)齿轮液压泵的效率与性能比较分析

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Mehmet Yazar
{"title":"正齿轮与非圆(方)齿轮液压泵的效率与性能比较分析","authors":"Mehmet Yazar","doi":"10.1016/j.flowmeasinst.2025.102817","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the comparative energy consumption performance of hydraulic spur gear pumps, whose technical features and efficiency are well-known, and non-circular (square) gear pumps, whose technical features and efficiency have not been sufficiently investigated, under the same operating conditions. The study encompasses both theoretical and experimental analyses. In the theoretical section, the design process of the square gear pump, the creation of gear geometry, its operating principles, and potential advantages are explained in detail. At this stage, physical prototypes were developed using CAD models and rapid manufacturing techniques, and their functionality was verified. Thus, the volumetric flow rate, operating pressure, hydraulic oil temperature variations, and power consumption at different speeds of the gear pumps were experimentally analyzed and evaluated in detail. The findings indicate that, at the same speed and within the same time unit, the square gear pump consumed approximately 0.59 %–33.94 % less power (kW) per unit flow rate and 8.08 %–74.33 % less power per unit pressure compared to the spur gear pump. These results reveal that the square gear pump consumes less power than the spur gear pump. Furthermore, the square gear pump demonstrated higher fluid transport capacity and operating pressure during operation. These results indicate that the square gear pump offers a promising alternative for industrial applications, combining high efficiency with low power consumption.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"102 ","pages":"Article 102817"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative efficiency and performance analysis of spur gear and non-circular (square) gear hydraulic pumps\",\"authors\":\"Mehmet Yazar\",\"doi\":\"10.1016/j.flowmeasinst.2025.102817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the comparative energy consumption performance of hydraulic spur gear pumps, whose technical features and efficiency are well-known, and non-circular (square) gear pumps, whose technical features and efficiency have not been sufficiently investigated, under the same operating conditions. The study encompasses both theoretical and experimental analyses. In the theoretical section, the design process of the square gear pump, the creation of gear geometry, its operating principles, and potential advantages are explained in detail. At this stage, physical prototypes were developed using CAD models and rapid manufacturing techniques, and their functionality was verified. Thus, the volumetric flow rate, operating pressure, hydraulic oil temperature variations, and power consumption at different speeds of the gear pumps were experimentally analyzed and evaluated in detail. The findings indicate that, at the same speed and within the same time unit, the square gear pump consumed approximately 0.59 %–33.94 % less power (kW) per unit flow rate and 8.08 %–74.33 % less power per unit pressure compared to the spur gear pump. These results reveal that the square gear pump consumes less power than the spur gear pump. Furthermore, the square gear pump demonstrated higher fluid transport capacity and operating pressure during operation. These results indicate that the square gear pump offers a promising alternative for industrial applications, combining high efficiency with low power consumption.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"102 \",\"pages\":\"Article 102817\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598625000093\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598625000093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在相同工况下,液压直齿齿轮泵和非圆(方)齿轮泵的能耗性能的比较,前者的技术特点和效率是众所周知的,而后者的技术特点和效率还没有得到充分的研究。这项研究包括理论分析和实验分析。在理论部分,详细阐述了方形齿轮泵的设计过程、齿轮几何形状的创建、其工作原理以及潜在的优势。在此阶段,使用CAD模型和快速制造技术开发物理原型,并验证其功能。在此基础上,对不同转速下齿轮泵的容积流量、工作压力、液压油温度变化和功耗进行了详细的实验分析和评估。结果表明,在相同的转速和相同的时间单位内,与正齿轮齿轮泵相比,方形齿轮泵每单位流量的功率(kW)和单位压力的功率(kW)分别减少了0.59% ~ 33.94%和8.08% ~ 74.33%。这些结果表明,方形齿轮泵比正齿轮齿轮泵消耗更少的功率。此外,在运行过程中,方齿轮泵表现出较高的流体输送能力和工作压力。这些结果表明,方形齿轮泵为工业应用提供了一个有前途的替代方案,结合了高效率和低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative efficiency and performance analysis of spur gear and non-circular (square) gear hydraulic pumps
This study addresses the comparative energy consumption performance of hydraulic spur gear pumps, whose technical features and efficiency are well-known, and non-circular (square) gear pumps, whose technical features and efficiency have not been sufficiently investigated, under the same operating conditions. The study encompasses both theoretical and experimental analyses. In the theoretical section, the design process of the square gear pump, the creation of gear geometry, its operating principles, and potential advantages are explained in detail. At this stage, physical prototypes were developed using CAD models and rapid manufacturing techniques, and their functionality was verified. Thus, the volumetric flow rate, operating pressure, hydraulic oil temperature variations, and power consumption at different speeds of the gear pumps were experimentally analyzed and evaluated in detail. The findings indicate that, at the same speed and within the same time unit, the square gear pump consumed approximately 0.59 %–33.94 % less power (kW) per unit flow rate and 8.08 %–74.33 % less power per unit pressure compared to the spur gear pump. These results reveal that the square gear pump consumes less power than the spur gear pump. Furthermore, the square gear pump demonstrated higher fluid transport capacity and operating pressure during operation. These results indicate that the square gear pump offers a promising alternative for industrial applications, combining high efficiency with low power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow Measurement and Instrumentation
Flow Measurement and Instrumentation 工程技术-工程:机械
CiteScore
4.30
自引率
13.60%
发文量
123
审稿时长
6 months
期刊介绍: Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions. FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest: Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible. Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems. Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories. Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信