生物质粉煤灰替代水泥基材料填料的流变学研究

IF 6.5 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yannick Vanhove, Joella Grâce Dossa, Jonathan Page, Chafika Djelal
{"title":"生物质粉煤灰替代水泥基材料填料的流变学研究","authors":"Yannick Vanhove,&nbsp;Joella Grâce Dossa,&nbsp;Jonathan Page,&nbsp;Chafika Djelal","doi":"10.1016/j.cscm.2024.e04133","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass Fly Ash (BFA) represents a significant waste, which needs to find a new way of recovery. Their use as replacement for cement remains difficult because these ashes are generally non-reactive and lead to low resistance for cementitious materials. This study explores the feasibility of valorizing these biomass ashes as replacement for limestone filler, generally used in concrete to improve rheological stability of mixtures. An experimental program, based on a progressive replacement of limestone filler (LF) with biomass ash, is proposed. The rheological behavior of BFA were studied from a Blast Furnace Slag cement (BFS) and an ordinary Portland cement (OPC). The incorporation of BFA in replacement of LF increase the non-linearity of flow behavior depending of the shear rate intensity. A loss of workability with BFA is observed, associated to the difference in water demand between BFA and LF. In addition, BFA-based mixtures present more shear thinning behavior in comparison with the limestone filler. This study provides a rheological basis for functional aspects of a possible replacement of limestone filler by BFA in the future and demonstrates the use of BFA can improve working performance of cement-based materials.</div></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"22 ","pages":"Article e04133"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological benefits of biomass fly ash as filler replacement in cement-based materials\",\"authors\":\"Yannick Vanhove,&nbsp;Joella Grâce Dossa,&nbsp;Jonathan Page,&nbsp;Chafika Djelal\",\"doi\":\"10.1016/j.cscm.2024.e04133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass Fly Ash (BFA) represents a significant waste, which needs to find a new way of recovery. Their use as replacement for cement remains difficult because these ashes are generally non-reactive and lead to low resistance for cementitious materials. This study explores the feasibility of valorizing these biomass ashes as replacement for limestone filler, generally used in concrete to improve rheological stability of mixtures. An experimental program, based on a progressive replacement of limestone filler (LF) with biomass ash, is proposed. The rheological behavior of BFA were studied from a Blast Furnace Slag cement (BFS) and an ordinary Portland cement (OPC). The incorporation of BFA in replacement of LF increase the non-linearity of flow behavior depending of the shear rate intensity. A loss of workability with BFA is observed, associated to the difference in water demand between BFA and LF. In addition, BFA-based mixtures present more shear thinning behavior in comparison with the limestone filler. This study provides a rheological basis for functional aspects of a possible replacement of limestone filler by BFA in the future and demonstrates the use of BFA can improve working performance of cement-based materials.</div></div>\",\"PeriodicalId\":9641,\"journal\":{\"name\":\"Case Studies in Construction Materials\",\"volume\":\"22 \",\"pages\":\"Article e04133\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Construction Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214509524012853\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524012853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物质飞灰是一种重要的废弃物,需要寻找新的回收途径。它们作为水泥替代品的使用仍然很困难,因为这些灰烬通常是非活性的,并且导致胶凝材料的低阻力。本研究探讨了使这些生物质灰烬增值作为石灰石填料的可行性,石灰石填料通常用于混凝土中,以提高混合物的流变稳定性。提出了一种以生物质灰逐步替代石灰石填料(LF)的实验方案。以矿渣水泥(BFS)和普通硅酸盐水泥(OPC)为原料,研究了BFA的流变特性。加入BFA代替LF增加了流动特性随剪切速率强度的非线性。与BFA和LF之间需水量的差异有关,观察到BFA的可加工性损失。此外,与石灰石填料相比,bfa基混合料表现出更多的剪切减薄行为。本研究为未来BFA可能替代石灰石填料的功能方面提供了流变学基础,并证明了BFA的使用可以改善水泥基材料的工作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheological benefits of biomass fly ash as filler replacement in cement-based materials
Biomass Fly Ash (BFA) represents a significant waste, which needs to find a new way of recovery. Their use as replacement for cement remains difficult because these ashes are generally non-reactive and lead to low resistance for cementitious materials. This study explores the feasibility of valorizing these biomass ashes as replacement for limestone filler, generally used in concrete to improve rheological stability of mixtures. An experimental program, based on a progressive replacement of limestone filler (LF) with biomass ash, is proposed. The rheological behavior of BFA were studied from a Blast Furnace Slag cement (BFS) and an ordinary Portland cement (OPC). The incorporation of BFA in replacement of LF increase the non-linearity of flow behavior depending of the shear rate intensity. A loss of workability with BFA is observed, associated to the difference in water demand between BFA and LF. In addition, BFA-based mixtures present more shear thinning behavior in comparison with the limestone filler. This study provides a rheological basis for functional aspects of a possible replacement of limestone filler by BFA in the future and demonstrates the use of BFA can improve working performance of cement-based materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
19.40%
发文量
842
审稿时长
63 days
期刊介绍: Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation). The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信