口腔肿瘤学中人工智能驱动的诊断和个性化治疗计划:创新和未来方向

R. Satheeskumar
{"title":"口腔肿瘤学中人工智能驱动的诊断和个性化治疗计划:创新和未来方向","authors":"R. Satheeskumar","doi":"10.1016/j.oor.2024.100704","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing incidence and complexity of oral cancers demand advancements in both diagnostic precision and individualized treatment strategies. This study investigates the application of artificial intelligence (AI), particularly through deep learning and machine learning models, to enhance diagnostic accuracy and support personalized treatment planning in oral oncology. Recent advancements in AI-driven diagnostics, particularly using Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have significantly improved early detection and treatment prediction for oral cancer. By integrating datasets from medical imaging, clinical records, and histopathological profiles, our AI-driven models achieved a diagnostic accuracy of 93 %, with a sensitivity of 91 % and specificity of 94 %, surpassing traditional diagnostic approaches. Furthermore, our treatment prediction models, employing patient-specific tumour characteristics and clinical variables, demonstrated an 87 % accuracy in forecasting optimal therapeutic responses, effectively tailoring treatment strategies to individual patients. These findings underscore AI's transformative potential in oral oncology, providing a foundation for improved patient outcomes and paving the way for future innovations in personalized medicine, as highlighted by recent studies in the field.</div></div>","PeriodicalId":94378,"journal":{"name":"Oral Oncology Reports","volume":"13 ","pages":"Article 100704"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven diagnostics and personalized treatment planning in oral oncology: Innovations and future directions\",\"authors\":\"R. Satheeskumar\",\"doi\":\"10.1016/j.oor.2024.100704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing incidence and complexity of oral cancers demand advancements in both diagnostic precision and individualized treatment strategies. This study investigates the application of artificial intelligence (AI), particularly through deep learning and machine learning models, to enhance diagnostic accuracy and support personalized treatment planning in oral oncology. Recent advancements in AI-driven diagnostics, particularly using Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have significantly improved early detection and treatment prediction for oral cancer. By integrating datasets from medical imaging, clinical records, and histopathological profiles, our AI-driven models achieved a diagnostic accuracy of 93 %, with a sensitivity of 91 % and specificity of 94 %, surpassing traditional diagnostic approaches. Furthermore, our treatment prediction models, employing patient-specific tumour characteristics and clinical variables, demonstrated an 87 % accuracy in forecasting optimal therapeutic responses, effectively tailoring treatment strategies to individual patients. These findings underscore AI's transformative potential in oral oncology, providing a foundation for improved patient outcomes and paving the way for future innovations in personalized medicine, as highlighted by recent studies in the field.</div></div>\",\"PeriodicalId\":94378,\"journal\":{\"name\":\"Oral Oncology Reports\",\"volume\":\"13 \",\"pages\":\"Article 100704\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral Oncology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772906024005508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral Oncology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772906024005508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

口腔癌的发病率和复杂性的增加要求在诊断精度和个性化治疗策略方面取得进展。本研究探讨了人工智能(AI)的应用,特别是通过深度学习和机器学习模型,以提高口腔肿瘤的诊断准确性和支持个性化治疗计划。人工智能驱动诊断的最新进展,特别是卷积神经网络(cnn)和视觉变压器(ViTs)的使用,显著改善了口腔癌的早期检测和治疗预测。通过整合医学影像、临床记录和组织病理学数据集,我们的人工智能驱动模型的诊断准确率达到93%,灵敏度为91%,特异性为94%,超过了传统的诊断方法。此外,我们的治疗预测模型采用患者特异性肿瘤特征和临床变量,在预测最佳治疗反应方面显示出87%的准确率,有效地为个体患者量身定制治疗策略。这些发现强调了人工智能在口腔肿瘤学领域的变革潜力,为改善患者治疗结果奠定了基础,并为个性化医疗的未来创新铺平了道路,正如该领域最近的研究所强调的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven diagnostics and personalized treatment planning in oral oncology: Innovations and future directions
The increasing incidence and complexity of oral cancers demand advancements in both diagnostic precision and individualized treatment strategies. This study investigates the application of artificial intelligence (AI), particularly through deep learning and machine learning models, to enhance diagnostic accuracy and support personalized treatment planning in oral oncology. Recent advancements in AI-driven diagnostics, particularly using Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have significantly improved early detection and treatment prediction for oral cancer. By integrating datasets from medical imaging, clinical records, and histopathological profiles, our AI-driven models achieved a diagnostic accuracy of 93 %, with a sensitivity of 91 % and specificity of 94 %, surpassing traditional diagnostic approaches. Furthermore, our treatment prediction models, employing patient-specific tumour characteristics and clinical variables, demonstrated an 87 % accuracy in forecasting optimal therapeutic responses, effectively tailoring treatment strategies to individual patients. These findings underscore AI's transformative potential in oral oncology, providing a foundation for improved patient outcomes and paving the way for future innovations in personalized medicine, as highlighted by recent studies in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信