海水火山渣骨料混凝土与GFRP筋粘结试验与数值研究

IF 8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yijie Huang , Xiaoli Ma , Yanfei Dang , Huangsheng Sun , Pham Loan
{"title":"海水火山渣骨料混凝土与GFRP筋粘结试验与数值研究","authors":"Yijie Huang ,&nbsp;Xiaoli Ma ,&nbsp;Yanfei Dang ,&nbsp;Huangsheng Sun ,&nbsp;Pham Loan","doi":"10.1016/j.conbuildmat.2024.139834","DOIUrl":null,"url":null,"abstract":"<div><div>The bond between glass fibre-reinforced plastic (GFRP) rebars and seawater volcanic scoria aggregate concrete (SVSAC) were systematically studied through a series of pull-out tests combined with numerical analyses. Fourteen groups and 42 specimens were fabricated, including five parameters: concrete type (SVSAC and ordinary concrete (OC)), concrete strength (C30 and C40), bond length (three, five, and eight times the rebar diameter), concrete cover thickness (67 and 42 mm), and rebar parameters (rib spacings of 8, 12.7, and 18 mm). An MTS-SANS universal loading system was adopted in this study, and a displacement-loading mode with a 0.2 mm/min loading rate was used during the pull-out test. The failure modes, strengths, bond-slip curves and bond mechanism (i.e., wedge action and mechanical interlocking) of the specimens were systematically investigated. Generally, the failure pattern of the SVSAC specimen with the GFRP rebar (SVSAC-GFRP) was a splitting failure, and its bond strength increased by 6.42 % on average compared with that of the OC specimen with the GFRP rebar (OC-GFRP). The bond strength of SVSAC-GFRP increased with increasing concrete strength and cover thickness and decreasing bond length. The bond-slip curve of SVSAC-GFRP changed with variations in the critical parameters. The curvature of the curve decreased after the adoption of the SVSAC and GFRP rebars. However, the decline in the curve tended to be smooth with increasing cover thickness and decreasing bond length. The peak slip of the SVSAC-GFRP specimen was 18.92 % smaller than that of the OC-GFRP specimen, and the difference was made negligible by improving the concrete strength. Furthermore, the effects of critical variables on the bond mechanism were also investigated through numerical simulations, indicating the characteristics of GFRP rebars greatly changed the wedge action and mechanical interlocking of specimen, causing a variation in macroscopic bond performance. In general, the bond strength of the SVSAC-GFRP specimens first increased and then decreased with increasing the rib height, obtaining its maximum value when the rib height was 6 % of the diameter. Finally, analytical model describing the bond properties of SVSAC-GFRP were established, which provide a basis for the practical application of marine composite structures.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"462 ","pages":"Article 139834"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical studies on bond between seawater volcanic scoria aggregate concrete and GFRP rebars\",\"authors\":\"Yijie Huang ,&nbsp;Xiaoli Ma ,&nbsp;Yanfei Dang ,&nbsp;Huangsheng Sun ,&nbsp;Pham Loan\",\"doi\":\"10.1016/j.conbuildmat.2024.139834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The bond between glass fibre-reinforced plastic (GFRP) rebars and seawater volcanic scoria aggregate concrete (SVSAC) were systematically studied through a series of pull-out tests combined with numerical analyses. Fourteen groups and 42 specimens were fabricated, including five parameters: concrete type (SVSAC and ordinary concrete (OC)), concrete strength (C30 and C40), bond length (three, five, and eight times the rebar diameter), concrete cover thickness (67 and 42 mm), and rebar parameters (rib spacings of 8, 12.7, and 18 mm). An MTS-SANS universal loading system was adopted in this study, and a displacement-loading mode with a 0.2 mm/min loading rate was used during the pull-out test. The failure modes, strengths, bond-slip curves and bond mechanism (i.e., wedge action and mechanical interlocking) of the specimens were systematically investigated. Generally, the failure pattern of the SVSAC specimen with the GFRP rebar (SVSAC-GFRP) was a splitting failure, and its bond strength increased by 6.42 % on average compared with that of the OC specimen with the GFRP rebar (OC-GFRP). The bond strength of SVSAC-GFRP increased with increasing concrete strength and cover thickness and decreasing bond length. The bond-slip curve of SVSAC-GFRP changed with variations in the critical parameters. The curvature of the curve decreased after the adoption of the SVSAC and GFRP rebars. However, the decline in the curve tended to be smooth with increasing cover thickness and decreasing bond length. The peak slip of the SVSAC-GFRP specimen was 18.92 % smaller than that of the OC-GFRP specimen, and the difference was made negligible by improving the concrete strength. Furthermore, the effects of critical variables on the bond mechanism were also investigated through numerical simulations, indicating the characteristics of GFRP rebars greatly changed the wedge action and mechanical interlocking of specimen, causing a variation in macroscopic bond performance. In general, the bond strength of the SVSAC-GFRP specimens first increased and then decreased with increasing the rib height, obtaining its maximum value when the rib height was 6 % of the diameter. Finally, analytical model describing the bond properties of SVSAC-GFRP were established, which provide a basis for the practical application of marine composite structures.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"462 \",\"pages\":\"Article 139834\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824049766\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824049766","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过一系列拉拔试验与数值分析相结合,系统研究了玻璃钢(GFRP)钢筋与海水火山渣骨料混凝土(SVSAC)的粘结性能。共制作14组42个试件,包括5个参数:混凝土类型(SVSAC和普通混凝土(OC))、混凝土强度(C30和C40)、粘结长度(钢筋直径的3倍、5倍和8倍)、混凝土覆盖厚度(67和42 mm)和钢筋参数(肋间距为8、12.7和18 mm)。本研究采用MTS-SANS通用加载系统,拔出试验采用0.2 mm/min加载速率的位移加载模式。系统地研究了试件的破坏模式、强度、粘结-滑移曲线和粘结机制(即楔形作用和机械联锁)。一般情况下,SVSAC试件与GFRP筋(SVSAC-GFRP)的破坏模式为劈裂破坏,其粘结强度比普通混凝土试件与GFRP筋(OC-GFRP)的粘结强度平均提高6.42 %。SVSAC-GFRP的粘结强度随混凝土强度和覆盖层厚度的增加而增大,随粘结长度的减小而减小。SVSAC-GFRP的粘结滑移曲线随临界参数的变化而变化。采用SVSAC和GFRP筋后,曲线曲率减小。随着覆盖层厚度的增加和键长的减小,曲线的下降趋势趋于平缓。SVSAC-GFRP试件的峰值滑移比OC-GFRP试件小18.92 %,通过提高混凝土强度可以忽略不计。此外,通过数值模拟研究了关键变量对粘结机制的影响,表明GFRP筋的特性极大地改变了试件的楔形作用和力学互锁,从而导致宏观粘结性能的变化。总体上,随着筋高的增加,SVSAC-GFRP试件的粘结强度先升高后降低,当筋高为直径的6 %时达到最大值。最后,建立了描述SVSAC-GFRP粘结性能的解析模型,为船舶复合材料结构的实际应用提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical studies on bond between seawater volcanic scoria aggregate concrete and GFRP rebars
The bond between glass fibre-reinforced plastic (GFRP) rebars and seawater volcanic scoria aggregate concrete (SVSAC) were systematically studied through a series of pull-out tests combined with numerical analyses. Fourteen groups and 42 specimens were fabricated, including five parameters: concrete type (SVSAC and ordinary concrete (OC)), concrete strength (C30 and C40), bond length (three, five, and eight times the rebar diameter), concrete cover thickness (67 and 42 mm), and rebar parameters (rib spacings of 8, 12.7, and 18 mm). An MTS-SANS universal loading system was adopted in this study, and a displacement-loading mode with a 0.2 mm/min loading rate was used during the pull-out test. The failure modes, strengths, bond-slip curves and bond mechanism (i.e., wedge action and mechanical interlocking) of the specimens were systematically investigated. Generally, the failure pattern of the SVSAC specimen with the GFRP rebar (SVSAC-GFRP) was a splitting failure, and its bond strength increased by 6.42 % on average compared with that of the OC specimen with the GFRP rebar (OC-GFRP). The bond strength of SVSAC-GFRP increased with increasing concrete strength and cover thickness and decreasing bond length. The bond-slip curve of SVSAC-GFRP changed with variations in the critical parameters. The curvature of the curve decreased after the adoption of the SVSAC and GFRP rebars. However, the decline in the curve tended to be smooth with increasing cover thickness and decreasing bond length. The peak slip of the SVSAC-GFRP specimen was 18.92 % smaller than that of the OC-GFRP specimen, and the difference was made negligible by improving the concrete strength. Furthermore, the effects of critical variables on the bond mechanism were also investigated through numerical simulations, indicating the characteristics of GFRP rebars greatly changed the wedge action and mechanical interlocking of specimen, causing a variation in macroscopic bond performance. In general, the bond strength of the SVSAC-GFRP specimens first increased and then decreased with increasing the rib height, obtaining its maximum value when the rib height was 6 % of the diameter. Finally, analytical model describing the bond properties of SVSAC-GFRP were established, which provide a basis for the practical application of marine composite structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信