非常规蛋白分泌:探索膜蛋白及其他

IF 6 2区 生物学 Q1 CELL BIOLOGY
Long Lin
{"title":"非常规蛋白分泌:探索膜蛋白及其他","authors":"Long Lin","doi":"10.1016/j.ceb.2025.102469","DOIUrl":null,"url":null,"abstract":"<div><div>Protein secretion is essential for cellular communication and function, enabling the delivery of both soluble and integral membrane proteins to the extracellular space and the cell surface. While the classical endoplasmic reticulum (ER)–Golgi pathway has been extensively studied, emerging evidence highlights the existence of unconventional protein secretion (UcPS) pathways. Among these, the mechanisms that enable membrane proteins to bypass the Golgi apparatus remain poorly understood. In this review, I discuss recent advances that shed light on the processes governing Golgi-bypassing membrane secretion. These findings reveal that UcPS of membrane proteins is evolutionarily conserved, operates under both physiological and stress conditions, and involves diverse intermediate carriers and molecular players. Looking ahead, advances in technology and the development of more sophisticated functional assays, along with <em>in vivo</em> models, are expected to further unravel the molecular mechanisms and biological roles of these unconventional pathways.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"93 ","pages":"Article 102469"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconventional protein secretion: Exploring membrane proteins and beyond\",\"authors\":\"Long Lin\",\"doi\":\"10.1016/j.ceb.2025.102469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein secretion is essential for cellular communication and function, enabling the delivery of both soluble and integral membrane proteins to the extracellular space and the cell surface. While the classical endoplasmic reticulum (ER)–Golgi pathway has been extensively studied, emerging evidence highlights the existence of unconventional protein secretion (UcPS) pathways. Among these, the mechanisms that enable membrane proteins to bypass the Golgi apparatus remain poorly understood. In this review, I discuss recent advances that shed light on the processes governing Golgi-bypassing membrane secretion. These findings reveal that UcPS of membrane proteins is evolutionarily conserved, operates under both physiological and stress conditions, and involves diverse intermediate carriers and molecular players. Looking ahead, advances in technology and the development of more sophisticated functional assays, along with <em>in vivo</em> models, are expected to further unravel the molecular mechanisms and biological roles of these unconventional pathways.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"93 \",\"pages\":\"Article 102469\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425000079\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质分泌对细胞的通讯和功能至关重要,使可溶性和整体膜蛋白能够传递到细胞外空间和细胞表面。虽然经典的内质网(ER) -高尔基体途径已被广泛研究,但新出现的证据强调了非常规蛋白分泌(UcPS)途径的存在。其中,使膜蛋白绕过高尔基体的机制仍然知之甚少。在这篇综述中,我讨论了最近的进展,阐明了控制高尔基绕过膜分泌的过程。这些研究结果表明,膜蛋白的UcPS具有进化保守性,在生理和应激条件下均可发挥作用,并涉及多种中间载体和分子参与者。展望未来,技术的进步和更复杂的功能分析的发展,以及体内模型,有望进一步揭示这些非常规途径的分子机制和生物学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconventional protein secretion: Exploring membrane proteins and beyond
Protein secretion is essential for cellular communication and function, enabling the delivery of both soluble and integral membrane proteins to the extracellular space and the cell surface. While the classical endoplasmic reticulum (ER)–Golgi pathway has been extensively studied, emerging evidence highlights the existence of unconventional protein secretion (UcPS) pathways. Among these, the mechanisms that enable membrane proteins to bypass the Golgi apparatus remain poorly understood. In this review, I discuss recent advances that shed light on the processes governing Golgi-bypassing membrane secretion. These findings reveal that UcPS of membrane proteins is evolutionarily conserved, operates under both physiological and stress conditions, and involves diverse intermediate carriers and molecular players. Looking ahead, advances in technology and the development of more sophisticated functional assays, along with in vivo models, are expected to further unravel the molecular mechanisms and biological roles of these unconventional pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信