Bin Zhao , Xiaozhen Huang , Sein Chung , Min Zhang , Yufei Zhong , Anhai Liang , Zhenmin Zhao , Chaofeng Zhu , Jingjing Zhao , Seunghyun Kim , Jimin Kim , Ming Wang , Shilin Chen , Kilwon Cho , Yang Wang , Zhipeng Kan
{"title":"空穴选择性分子掺杂提高了高效有机太阳能电池PEDOT:PSS的层厚公差","authors":"Bin Zhao , Xiaozhen Huang , Sein Chung , Min Zhang , Yufei Zhong , Anhai Liang , Zhenmin Zhao , Chaofeng Zhu , Jingjing Zhao , Seunghyun Kim , Jimin Kim , Ming Wang , Shilin Chen , Kilwon Cho , Yang Wang , Zhipeng Kan","doi":"10.1016/j.esci.2024.100305","DOIUrl":null,"url":null,"abstract":"<div><div>When used in organic solar cells, poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) aligns interfacial energy levels, promotes hole extraction, blocks electrons, and optimizes the active layer’s morphology. However, with an optimal thickness of approximately 30–40 nm, PEDOT:PSS has insufficient layer thickness tolerance, owing to its low conductivity and hole extraction property. Herein, a hole-selective-molecule doping strategy is proposed to enhance the properties of PEDOT:PSS by introducing MPA2FPh-BT-BA (abbreviated as 2F) into its layer. 2F assembles at the anode to form interfacial dipoles due to its unique donor–acceptor–anchor molecular configuration, altering the anode work function and hole-selective extraction. Additionally, 2F improves the aggregation properties of PEDOT:PSS by forming hydrogen bonds with the PSS group, enhancing the conductivity characteristics. These changes in the PEDOT:PSS layer further influence the overlaying morphology, leading to increased crystalline features of PM6 and the bulk heterojunction of PM6:Y6. When a 2F-PEDOT:PSS (2FPP) layer is used, power conversion efficiencies of 18.3%, 19.2%, and 19.1% are achieved in PM6:Y6, PM6:BTP-eC9, and PM6:L8-BO devices, respectively, outperforming counterparts with PEDOT:PSS. Specifically, the performance of PM6:Y6 devices with a 2FPP layer of 170 nm remains at > 15%, providing valuable guidance for designing a thickness-insensitive hole transport layer for high-efficiency organic solar cells.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100305"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT:PSS for efficient organic solar cells\",\"authors\":\"Bin Zhao , Xiaozhen Huang , Sein Chung , Min Zhang , Yufei Zhong , Anhai Liang , Zhenmin Zhao , Chaofeng Zhu , Jingjing Zhao , Seunghyun Kim , Jimin Kim , Ming Wang , Shilin Chen , Kilwon Cho , Yang Wang , Zhipeng Kan\",\"doi\":\"10.1016/j.esci.2024.100305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When used in organic solar cells, poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) aligns interfacial energy levels, promotes hole extraction, blocks electrons, and optimizes the active layer’s morphology. However, with an optimal thickness of approximately 30–40 nm, PEDOT:PSS has insufficient layer thickness tolerance, owing to its low conductivity and hole extraction property. Herein, a hole-selective-molecule doping strategy is proposed to enhance the properties of PEDOT:PSS by introducing MPA2FPh-BT-BA (abbreviated as 2F) into its layer. 2F assembles at the anode to form interfacial dipoles due to its unique donor–acceptor–anchor molecular configuration, altering the anode work function and hole-selective extraction. Additionally, 2F improves the aggregation properties of PEDOT:PSS by forming hydrogen bonds with the PSS group, enhancing the conductivity characteristics. These changes in the PEDOT:PSS layer further influence the overlaying morphology, leading to increased crystalline features of PM6 and the bulk heterojunction of PM6:Y6. When a 2F-PEDOT:PSS (2FPP) layer is used, power conversion efficiencies of 18.3%, 19.2%, and 19.1% are achieved in PM6:Y6, PM6:BTP-eC9, and PM6:L8-BO devices, respectively, outperforming counterparts with PEDOT:PSS. Specifically, the performance of PM6:Y6 devices with a 2FPP layer of 170 nm remains at > 15%, providing valuable guidance for designing a thickness-insensitive hole transport layer for high-efficiency organic solar cells.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 1\",\"pages\":\"Article 100305\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT:PSS for efficient organic solar cells
When used in organic solar cells, poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) aligns interfacial energy levels, promotes hole extraction, blocks electrons, and optimizes the active layer’s morphology. However, with an optimal thickness of approximately 30–40 nm, PEDOT:PSS has insufficient layer thickness tolerance, owing to its low conductivity and hole extraction property. Herein, a hole-selective-molecule doping strategy is proposed to enhance the properties of PEDOT:PSS by introducing MPA2FPh-BT-BA (abbreviated as 2F) into its layer. 2F assembles at the anode to form interfacial dipoles due to its unique donor–acceptor–anchor molecular configuration, altering the anode work function and hole-selective extraction. Additionally, 2F improves the aggregation properties of PEDOT:PSS by forming hydrogen bonds with the PSS group, enhancing the conductivity characteristics. These changes in the PEDOT:PSS layer further influence the overlaying morphology, leading to increased crystalline features of PM6 and the bulk heterojunction of PM6:Y6. When a 2F-PEDOT:PSS (2FPP) layer is used, power conversion efficiencies of 18.3%, 19.2%, and 19.1% are achieved in PM6:Y6, PM6:BTP-eC9, and PM6:L8-BO devices, respectively, outperforming counterparts with PEDOT:PSS. Specifically, the performance of PM6:Y6 devices with a 2FPP layer of 170 nm remains at > 15%, providing valuable guidance for designing a thickness-insensitive hole transport layer for high-efficiency organic solar cells.