空穴选择性分子掺杂提高了高效有机太阳能电池PEDOT:PSS的层厚公差

IF 42.9 Q1 ELECTROCHEMISTRY
Bin Zhao , Xiaozhen Huang , Sein Chung , Min Zhang , Yufei Zhong , Anhai Liang , Zhenmin Zhao , Chaofeng Zhu , Jingjing Zhao , Seunghyun Kim , Jimin Kim , Ming Wang , Shilin Chen , Kilwon Cho , Yang Wang , Zhipeng Kan
{"title":"空穴选择性分子掺杂提高了高效有机太阳能电池PEDOT:PSS的层厚公差","authors":"Bin Zhao ,&nbsp;Xiaozhen Huang ,&nbsp;Sein Chung ,&nbsp;Min Zhang ,&nbsp;Yufei Zhong ,&nbsp;Anhai Liang ,&nbsp;Zhenmin Zhao ,&nbsp;Chaofeng Zhu ,&nbsp;Jingjing Zhao ,&nbsp;Seunghyun Kim ,&nbsp;Jimin Kim ,&nbsp;Ming Wang ,&nbsp;Shilin Chen ,&nbsp;Kilwon Cho ,&nbsp;Yang Wang ,&nbsp;Zhipeng Kan","doi":"10.1016/j.esci.2024.100305","DOIUrl":null,"url":null,"abstract":"<div><div>When used in organic solar cells, poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) aligns interfacial energy levels, promotes hole extraction, blocks electrons, and optimizes the active layer’s morphology. However, with an optimal thickness of approximately 30–40 ​nm, PEDOT:PSS has insufficient layer thickness tolerance, owing to its low conductivity and hole extraction property. Herein, a hole-selective-molecule doping strategy is proposed to enhance the properties of PEDOT:PSS by introducing MPA2FPh-BT-BA (abbreviated as 2F) into its layer. 2F assembles at the anode to form interfacial dipoles due to its unique donor–acceptor–anchor molecular configuration, altering the anode work function and hole-selective extraction. Additionally, 2F improves the aggregation properties of PEDOT:PSS by forming hydrogen bonds with the PSS group, enhancing the conductivity characteristics. These changes in the PEDOT:PSS layer further influence the overlaying morphology, leading to increased crystalline features of PM6 and the bulk heterojunction of PM6:Y6. When a 2F-PEDOT:PSS (2FPP) layer is used, power conversion efficiencies of 18.3%, 19.2%, and 19.1% are achieved in PM6:Y6, PM6:BTP-eC9, and PM6:L8-BO devices, respectively, outperforming counterparts with PEDOT:PSS. Specifically, the performance of PM6:Y6 devices with a 2FPP layer of 170 ​nm remains at &gt; 15%, providing valuable guidance for designing a thickness-insensitive hole transport layer for high-efficiency organic solar cells.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100305"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT:PSS for efficient organic solar cells\",\"authors\":\"Bin Zhao ,&nbsp;Xiaozhen Huang ,&nbsp;Sein Chung ,&nbsp;Min Zhang ,&nbsp;Yufei Zhong ,&nbsp;Anhai Liang ,&nbsp;Zhenmin Zhao ,&nbsp;Chaofeng Zhu ,&nbsp;Jingjing Zhao ,&nbsp;Seunghyun Kim ,&nbsp;Jimin Kim ,&nbsp;Ming Wang ,&nbsp;Shilin Chen ,&nbsp;Kilwon Cho ,&nbsp;Yang Wang ,&nbsp;Zhipeng Kan\",\"doi\":\"10.1016/j.esci.2024.100305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When used in organic solar cells, poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) aligns interfacial energy levels, promotes hole extraction, blocks electrons, and optimizes the active layer’s morphology. However, with an optimal thickness of approximately 30–40 ​nm, PEDOT:PSS has insufficient layer thickness tolerance, owing to its low conductivity and hole extraction property. Herein, a hole-selective-molecule doping strategy is proposed to enhance the properties of PEDOT:PSS by introducing MPA2FPh-BT-BA (abbreviated as 2F) into its layer. 2F assembles at the anode to form interfacial dipoles due to its unique donor–acceptor–anchor molecular configuration, altering the anode work function and hole-selective extraction. Additionally, 2F improves the aggregation properties of PEDOT:PSS by forming hydrogen bonds with the PSS group, enhancing the conductivity characteristics. These changes in the PEDOT:PSS layer further influence the overlaying morphology, leading to increased crystalline features of PM6 and the bulk heterojunction of PM6:Y6. When a 2F-PEDOT:PSS (2FPP) layer is used, power conversion efficiencies of 18.3%, 19.2%, and 19.1% are achieved in PM6:Y6, PM6:BTP-eC9, and PM6:L8-BO devices, respectively, outperforming counterparts with PEDOT:PSS. Specifically, the performance of PM6:Y6 devices with a 2FPP layer of 170 ​nm remains at &gt; 15%, providing valuable guidance for designing a thickness-insensitive hole transport layer for high-efficiency organic solar cells.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 1\",\"pages\":\"Article 100305\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

当用于有机太阳能电池时,聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸盐(PEDOT:PSS)可以调整界面能级,促进空穴提取,阻挡电子,并优化活性层的形态。然而,PEDOT:PSS的最佳厚度约为30-40 nm,由于其低导电性和孔提取性,其层厚容忍度不足。本文提出了一种空穴选择性分子掺杂策略,通过在PEDOT:PSS层中引入MPA2FPh-BT-BA(简称2F)来增强PEDOT:PSS的性能。由于其独特的供体-受体-锚定分子结构,2F在阳极组装形成界面偶极子,改变阳极功函数和孔选择性提取。此外,2F通过与PSS基团形成氢键,改善了PEDOT:PSS的聚集性能,增强了导电特性。PEDOT:PSS层的这些变化进一步影响了覆盖层的形貌,导致PM6的晶体特征和PM6:Y6的体异质结增加。当使用2F-PEDOT:PSS (2FPP)层时,PM6:Y6、PM6:BTP-eC9和PM6:L8-BO器件的功率转换效率分别达到18.3%、19.2%和19.1%,优于使用PEDOT:PSS的器件。具体而言,2FPP层为170 nm的PM6:Y6器件的性能保持在>;为高效有机太阳能电池厚度不敏感空穴传输层的设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT:PSS for efficient organic solar cells

Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT:PSS for efficient organic solar cells
When used in organic solar cells, poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) aligns interfacial energy levels, promotes hole extraction, blocks electrons, and optimizes the active layer’s morphology. However, with an optimal thickness of approximately 30–40 ​nm, PEDOT:PSS has insufficient layer thickness tolerance, owing to its low conductivity and hole extraction property. Herein, a hole-selective-molecule doping strategy is proposed to enhance the properties of PEDOT:PSS by introducing MPA2FPh-BT-BA (abbreviated as 2F) into its layer. 2F assembles at the anode to form interfacial dipoles due to its unique donor–acceptor–anchor molecular configuration, altering the anode work function and hole-selective extraction. Additionally, 2F improves the aggregation properties of PEDOT:PSS by forming hydrogen bonds with the PSS group, enhancing the conductivity characteristics. These changes in the PEDOT:PSS layer further influence the overlaying morphology, leading to increased crystalline features of PM6 and the bulk heterojunction of PM6:Y6. When a 2F-PEDOT:PSS (2FPP) layer is used, power conversion efficiencies of 18.3%, 19.2%, and 19.1% are achieved in PM6:Y6, PM6:BTP-eC9, and PM6:L8-BO devices, respectively, outperforming counterparts with PEDOT:PSS. Specifically, the performance of PM6:Y6 devices with a 2FPP layer of 170 ​nm remains at > 15%, providing valuable guidance for designing a thickness-insensitive hole transport layer for high-efficiency organic solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信