{"title":"利用草酸优化铁基固体废物转化为固碳复合建筑材料","authors":"Niveditha M, T. Palanisamy","doi":"10.1016/j.scp.2024.101875","DOIUrl":null,"url":null,"abstract":"<div><div>The cement industry significantly contributes to global CO<sub>2</sub> emissions, accounting for approximately 164 million metric tonnes annually, while total emissions from all sources reach 37 billion metric tonnes. Concurrently, the iron and steel sector generates substantial waste, producing about 500 kg of waste per tonne of steel. Addressing these environmental challenges is crucial for sustainable development. This study presents a sustainable alternative to traditional cement by developing a novel binder material composed primarily of waste iron. The alternative binder not only avoids CO<sub>2</sub> emissions but also absorbs CO<sub>2</sub> during carbonation curing, effectively contributing to carbon sequestration. Key parameters, including particle size, oxalic acid dosage, and water-to-binder ratio, were individually tested and analyzed for their impact on compressive strength, leading to the finalization of a 75μm particle size and a 0.2 water-to-binder ratio, which yielded compressive strengths of up to 45 MPa. The wet mix method for oxalic acid incorporation demonstrated superior performance compared to the dry mix approach. Comprehensive analyses, including XRD, FTIR, TGA/DTG, and FESEM, confirmed the enhanced reactivity and performance of the material with finer particles and optimized oxalic acid dosage. By utilizing 80% of waste materials, this alternative binder addresses both waste management and carbon capture, aligning with global sustainability objectives and advancing the development of eco-friendly building materials.</div></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":"43 ","pages":"Article 101875"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxalic acid optimization for iron-based solid waste conversion into a carbon-sequestering composite building material\",\"authors\":\"Niveditha M, T. Palanisamy\",\"doi\":\"10.1016/j.scp.2024.101875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cement industry significantly contributes to global CO<sub>2</sub> emissions, accounting for approximately 164 million metric tonnes annually, while total emissions from all sources reach 37 billion metric tonnes. Concurrently, the iron and steel sector generates substantial waste, producing about 500 kg of waste per tonne of steel. Addressing these environmental challenges is crucial for sustainable development. This study presents a sustainable alternative to traditional cement by developing a novel binder material composed primarily of waste iron. The alternative binder not only avoids CO<sub>2</sub> emissions but also absorbs CO<sub>2</sub> during carbonation curing, effectively contributing to carbon sequestration. Key parameters, including particle size, oxalic acid dosage, and water-to-binder ratio, were individually tested and analyzed for their impact on compressive strength, leading to the finalization of a 75μm particle size and a 0.2 water-to-binder ratio, which yielded compressive strengths of up to 45 MPa. The wet mix method for oxalic acid incorporation demonstrated superior performance compared to the dry mix approach. Comprehensive analyses, including XRD, FTIR, TGA/DTG, and FESEM, confirmed the enhanced reactivity and performance of the material with finer particles and optimized oxalic acid dosage. By utilizing 80% of waste materials, this alternative binder addresses both waste management and carbon capture, aligning with global sustainability objectives and advancing the development of eco-friendly building materials.</div></div>\",\"PeriodicalId\":22138,\"journal\":{\"name\":\"Sustainable Chemistry and Pharmacy\",\"volume\":\"43 \",\"pages\":\"Article 101875\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry and Pharmacy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352554124004509\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554124004509","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxalic acid optimization for iron-based solid waste conversion into a carbon-sequestering composite building material
The cement industry significantly contributes to global CO2 emissions, accounting for approximately 164 million metric tonnes annually, while total emissions from all sources reach 37 billion metric tonnes. Concurrently, the iron and steel sector generates substantial waste, producing about 500 kg of waste per tonne of steel. Addressing these environmental challenges is crucial for sustainable development. This study presents a sustainable alternative to traditional cement by developing a novel binder material composed primarily of waste iron. The alternative binder not only avoids CO2 emissions but also absorbs CO2 during carbonation curing, effectively contributing to carbon sequestration. Key parameters, including particle size, oxalic acid dosage, and water-to-binder ratio, were individually tested and analyzed for their impact on compressive strength, leading to the finalization of a 75μm particle size and a 0.2 water-to-binder ratio, which yielded compressive strengths of up to 45 MPa. The wet mix method for oxalic acid incorporation demonstrated superior performance compared to the dry mix approach. Comprehensive analyses, including XRD, FTIR, TGA/DTG, and FESEM, confirmed the enhanced reactivity and performance of the material with finer particles and optimized oxalic acid dosage. By utilizing 80% of waste materials, this alternative binder addresses both waste management and carbon capture, aligning with global sustainability objectives and advancing the development of eco-friendly building materials.
期刊介绍:
Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.