PWM-VSC的连续控制集模型-稳定性保证预测控制

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Juan-Camilo Oyuela-Ocampo , Alejandro Garcés-Ruiz , Santiago Sanchez-Acevedo , Kjell Ljøkelsøy , Salvatore D’Arco
{"title":"PWM-VSC的连续控制集模型-稳定性保证预测控制","authors":"Juan-Camilo Oyuela-Ocampo ,&nbsp;Alejandro Garcés-Ruiz ,&nbsp;Santiago Sanchez-Acevedo ,&nbsp;Kjell Ljøkelsøy ,&nbsp;Salvatore D’Arco","doi":"10.1016/j.conengprac.2025.106246","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of power electronics converters has become more and more dominant in power systems and this is posing stricter requirements for their controls in terms of stability and performance. The class of Model Predictive Controls (MPC) is particularly well suited for power electronics converters for its inherent ability to incorporate constraints while ensuring high dynamic performance. However, conventional approaches to guarantee stability may complicate the optimal control problem to the extent of making it unrealizable. This paper presents a Continuous Control-Set Model Predictive Control (CCS-MPC) for the Pulse-Width Modulated Voltage Source Converters (PWM-VSC). The bilinear structure of the discrete-time dynamic model is used to obtain a convex optimization problem that ensures a unique and global optimum solution in each step. Moreover, the stability is guaranteed via a discrete-time Lyapunov function derived directly from the Karush–Kuhn–Tucker (KKT) conditions. The proposed control shows a simple implementation with remarkable stability, performance, and clear advantages over the conventional design approach. These properties have been validated both in numerical simulations and experimentally on a 60 kVA converter.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"157 ","pages":"Article 106246"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Control-Set Model-Predictive Control with stability guarantee for the PWM-VSC\",\"authors\":\"Juan-Camilo Oyuela-Ocampo ,&nbsp;Alejandro Garcés-Ruiz ,&nbsp;Santiago Sanchez-Acevedo ,&nbsp;Kjell Ljøkelsøy ,&nbsp;Salvatore D’Arco\",\"doi\":\"10.1016/j.conengprac.2025.106246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The presence of power electronics converters has become more and more dominant in power systems and this is posing stricter requirements for their controls in terms of stability and performance. The class of Model Predictive Controls (MPC) is particularly well suited for power electronics converters for its inherent ability to incorporate constraints while ensuring high dynamic performance. However, conventional approaches to guarantee stability may complicate the optimal control problem to the extent of making it unrealizable. This paper presents a Continuous Control-Set Model Predictive Control (CCS-MPC) for the Pulse-Width Modulated Voltage Source Converters (PWM-VSC). The bilinear structure of the discrete-time dynamic model is used to obtain a convex optimization problem that ensures a unique and global optimum solution in each step. Moreover, the stability is guaranteed via a discrete-time Lyapunov function derived directly from the Karush–Kuhn–Tucker (KKT) conditions. The proposed control shows a simple implementation with remarkable stability, performance, and clear advantages over the conventional design approach. These properties have been validated both in numerical simulations and experimentally on a 60 kVA converter.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"157 \",\"pages\":\"Article 106246\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066125000097\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000097","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

电力电子变流器在电力系统中占据越来越重要的地位,这对其控制的稳定性和性能提出了更严格的要求。模型预测控制(MPC)类特别适合于电力电子转换器,因为它具有在确保高动态性能的同时纳入约束的固有能力。然而,传统的稳定性保证方法可能使最优控制问题复杂化,使其无法实现。提出了一种用于脉宽调制电压源变换器的连续控制集预测控制方法。利用离散时间动力学模型的双线性结构得到一个凸优化问题,保证每一步都有唯一的全局最优解。此外,通过直接从Karush-Kuhn-Tucker (KKT)条件导出的离散时间Lyapunov函数保证了稳定性。与传统的设计方法相比,所提出的控制方法实现简单,稳定性好,性能好,优势明显。这些特性在数值模拟和60kva变换器实验中都得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Continuous Control-Set Model-Predictive Control with stability guarantee for the PWM-VSC

Continuous Control-Set Model-Predictive Control with stability guarantee for the PWM-VSC
The presence of power electronics converters has become more and more dominant in power systems and this is posing stricter requirements for their controls in terms of stability and performance. The class of Model Predictive Controls (MPC) is particularly well suited for power electronics converters for its inherent ability to incorporate constraints while ensuring high dynamic performance. However, conventional approaches to guarantee stability may complicate the optimal control problem to the extent of making it unrealizable. This paper presents a Continuous Control-Set Model Predictive Control (CCS-MPC) for the Pulse-Width Modulated Voltage Source Converters (PWM-VSC). The bilinear structure of the discrete-time dynamic model is used to obtain a convex optimization problem that ensures a unique and global optimum solution in each step. Moreover, the stability is guaranteed via a discrete-time Lyapunov function derived directly from the Karush–Kuhn–Tucker (KKT) conditions. The proposed control shows a simple implementation with remarkable stability, performance, and clear advantages over the conventional design approach. These properties have been validated both in numerical simulations and experimentally on a 60 kVA converter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信