弯曲扇形区域弹性方程的鲁棒映射谱方法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Yuling Guo , Zhongqing Wang , Chao Zhang
{"title":"弯曲扇形区域弹性方程的鲁棒映射谱方法","authors":"Yuling Guo ,&nbsp;Zhongqing Wang ,&nbsp;Chao Zhang","doi":"10.1016/j.apnum.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a robust mapping Legendre spectral-Galerkin method for addressing elastic problems in simply-connected, fan-shaped domains with curved boundaries. By employing a polar coordinate transformation, we map the fan-shaped domain onto a rectangle, which transforms the original elastic equation into a variable coefficient equation. We then develop a Legendre spectral-Galerkin scheme for this variable coefficient equation. Additionally, we demonstrate the optimal convergence of the numerical solution in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm as the Lamé coefficient <em>λ</em> remains bounded. Numerical examples illustrate the high accuracy and robustness of our method, even as <em>λ</em> approaches infinity.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"211 ","pages":"Pages 144-157"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust mapping spectral method for elastic equations in curved fan-shaped domains\",\"authors\":\"Yuling Guo ,&nbsp;Zhongqing Wang ,&nbsp;Chao Zhang\",\"doi\":\"10.1016/j.apnum.2025.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a robust mapping Legendre spectral-Galerkin method for addressing elastic problems in simply-connected, fan-shaped domains with curved boundaries. By employing a polar coordinate transformation, we map the fan-shaped domain onto a rectangle, which transforms the original elastic equation into a variable coefficient equation. We then develop a Legendre spectral-Galerkin scheme for this variable coefficient equation. Additionally, we demonstrate the optimal convergence of the numerical solution in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm as the Lamé coefficient <em>λ</em> remains bounded. Numerical examples illustrate the high accuracy and robustness of our method, even as <em>λ</em> approaches infinity.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"211 \",\"pages\":\"Pages 144-157\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425000078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种鲁棒映射Legendre谱- galerkin方法,用于求解具有弯曲边界的单连通扇形区域的弹性问题。通过极坐标变换,将扇形域映射到矩形上,将原弹性方程转化为变系数方程。然后,我们为这个变系数方程建立了一个勒让德谱-伽辽金格式。此外,我们还证明了当lam系数λ保持有界时,数值解在h1范数下的最优收敛性。数值例子表明,即使λ接近无穷大,我们的方法也具有很高的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust mapping spectral method for elastic equations in curved fan-shaped domains
In this paper, we introduce a robust mapping Legendre spectral-Galerkin method for addressing elastic problems in simply-connected, fan-shaped domains with curved boundaries. By employing a polar coordinate transformation, we map the fan-shaped domain onto a rectangle, which transforms the original elastic equation into a variable coefficient equation. We then develop a Legendre spectral-Galerkin scheme for this variable coefficient equation. Additionally, we demonstrate the optimal convergence of the numerical solution in the H1-norm as the Lamé coefficient λ remains bounded. Numerical examples illustrate the high accuracy and robustness of our method, even as λ approaches infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信