可再生能源驱动多电联产系统优化设计:一种整合TRNSYS-GenOpt联动的新方法

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Muhammad Shoaib Saleem , Naeem Abas
{"title":"可再生能源驱动多电联产系统优化设计:一种整合TRNSYS-GenOpt联动的新方法","authors":"Muhammad Shoaib Saleem ,&nbsp;Naeem Abas","doi":"10.1016/j.clet.2024.100856","DOIUrl":null,"url":null,"abstract":"<div><div>Amid energy crisis, population growth, expanding energy demand, the utilities face limited supply of hydrocarbons due to depletion of available reserves. The future of energy supply quest for sustainable polygeneration system by integrating solar thermal, photovoltaic, wind and geothermal energy. The system is designed to produce multiple energy vectors including electricity, space heating &amp; cooling, hydrogen, oxygen, pure water, domestic hot water, and electric vehicle charging. The key innovation lies in optimal integration of energy conversion devices with a multi-tiered backup system featuring thermal, electric, and pressurized hydrogen storage which provide uninterrupted operation during intermittent weathers. The system is modeled and simulated using TRNSYS® and optimized via GenOpt by applying Hooke-Jeeve's algorithm. The results of optimal system having bore hole depth 100 m, collector area 560 m<sup>2</sup>, tank volume 15 m<sup>3</sup>, wind turbine hub height 46 m, PV module area 1.5 m<sup>2</sup>, electrolyzer electrode area 0.25 m<sup>2</sup>, fuel cell electrode area 0.01 m<sup>2</sup> show that the solar thermal collector achieves a peak efficiency (<em>η</em>) of 74% and a solar fraction (<em>f</em>) of 0.78, delivering 8020 MJ of heat gain annually. The thermally stratified storage tank provides 7105 MJ of heat energy by efficiently utilizing stored energy. Hydrogen production via electrolyzer reaches 54 m³ per day and 12,696 m³ annually, contributing to green energy storage. The wind energy system generates 1000 kWh at 41% efficiency. This study demonstrates the feasibility and performance of a polygeneration system, highlighting the potential of integrated renewable systems to meet diversified energy needs with enhanced storage solutions.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"24 ","pages":"Article 100856"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design of renewable driven polygeneration system: A novel approach integrating TRNSYS-GenOpt linkage\",\"authors\":\"Muhammad Shoaib Saleem ,&nbsp;Naeem Abas\",\"doi\":\"10.1016/j.clet.2024.100856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amid energy crisis, population growth, expanding energy demand, the utilities face limited supply of hydrocarbons due to depletion of available reserves. The future of energy supply quest for sustainable polygeneration system by integrating solar thermal, photovoltaic, wind and geothermal energy. The system is designed to produce multiple energy vectors including electricity, space heating &amp; cooling, hydrogen, oxygen, pure water, domestic hot water, and electric vehicle charging. The key innovation lies in optimal integration of energy conversion devices with a multi-tiered backup system featuring thermal, electric, and pressurized hydrogen storage which provide uninterrupted operation during intermittent weathers. The system is modeled and simulated using TRNSYS® and optimized via GenOpt by applying Hooke-Jeeve's algorithm. The results of optimal system having bore hole depth 100 m, collector area 560 m<sup>2</sup>, tank volume 15 m<sup>3</sup>, wind turbine hub height 46 m, PV module area 1.5 m<sup>2</sup>, electrolyzer electrode area 0.25 m<sup>2</sup>, fuel cell electrode area 0.01 m<sup>2</sup> show that the solar thermal collector achieves a peak efficiency (<em>η</em>) of 74% and a solar fraction (<em>f</em>) of 0.78, delivering 8020 MJ of heat gain annually. The thermally stratified storage tank provides 7105 MJ of heat energy by efficiently utilizing stored energy. Hydrogen production via electrolyzer reaches 54 m³ per day and 12,696 m³ annually, contributing to green energy storage. The wind energy system generates 1000 kWh at 41% efficiency. This study demonstrates the feasibility and performance of a polygeneration system, highlighting the potential of integrated renewable systems to meet diversified energy needs with enhanced storage solutions.</div></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":\"24 \",\"pages\":\"Article 100856\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790824001368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824001368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在能源危机、人口增长、能源需求扩大的背景下,由于现有储量的枯竭,公用事业公司面临着碳氢化合物供应有限的问题。未来的能源供应将寻求集太阳能热能、光伏、风能和地热能于一体的可持续多联产系统。该系统旨在产生多种能量矢量,包括电力,空间加热和;制冷、氢气、氧气、纯净水、生活热水、电动汽车充电。关键的创新在于能量转换设备与多层备用系统的最佳集成,该系统具有热、电和加压储氢功能,可在间歇性天气下提供不间断的运行。使用TRNSYS®对系统进行建模和仿真,并使用Hooke-Jeeve算法通过GenOpt对系统进行优化。最优系统孔深100 m,集热器面积560 m2,储罐容积15 m3,风力发电机轮毂高度46 m,光伏组件面积1.5 m2,电解槽电极面积0.25 m2,燃料电池电极面积0.01 m2,结果表明,太阳能集热器的峰值效率(η)为74%,太阳能分数(f)为0.78,年热增益8020 MJ。热分层储罐通过有效利用储存的能量提供7105兆焦耳的热能。通过电解槽生产氢气达到每天54 m³,每年12696 m³,为绿色能源储存做出贡献。风能系统产生1000千瓦时,效率为41%。本研究展示了多联产系统的可行性和性能,强调了集成可再生能源系统通过增强存储解决方案满足多样化能源需求的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal design of renewable driven polygeneration system: A novel approach integrating TRNSYS-GenOpt linkage

Optimal design of renewable driven polygeneration system: A novel approach integrating TRNSYS-GenOpt linkage
Amid energy crisis, population growth, expanding energy demand, the utilities face limited supply of hydrocarbons due to depletion of available reserves. The future of energy supply quest for sustainable polygeneration system by integrating solar thermal, photovoltaic, wind and geothermal energy. The system is designed to produce multiple energy vectors including electricity, space heating & cooling, hydrogen, oxygen, pure water, domestic hot water, and electric vehicle charging. The key innovation lies in optimal integration of energy conversion devices with a multi-tiered backup system featuring thermal, electric, and pressurized hydrogen storage which provide uninterrupted operation during intermittent weathers. The system is modeled and simulated using TRNSYS® and optimized via GenOpt by applying Hooke-Jeeve's algorithm. The results of optimal system having bore hole depth 100 m, collector area 560 m2, tank volume 15 m3, wind turbine hub height 46 m, PV module area 1.5 m2, electrolyzer electrode area 0.25 m2, fuel cell electrode area 0.01 m2 show that the solar thermal collector achieves a peak efficiency (η) of 74% and a solar fraction (f) of 0.78, delivering 8020 MJ of heat gain annually. The thermally stratified storage tank provides 7105 MJ of heat energy by efficiently utilizing stored energy. Hydrogen production via electrolyzer reaches 54 m³ per day and 12,696 m³ annually, contributing to green energy storage. The wind energy system generates 1000 kWh at 41% efficiency. This study demonstrates the feasibility and performance of a polygeneration system, highlighting the potential of integrated renewable systems to meet diversified energy needs with enhanced storage solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信