犯罪建模中poi的空间分布

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Lin Liu , Xin Gu , Minxuan Lan , Hanlin Zhou , Debao Chen , Zihan Su
{"title":"犯罪建模中poi的空间分布","authors":"Lin Liu ,&nbsp;Xin Gu ,&nbsp;Minxuan Lan ,&nbsp;Hanlin Zhou ,&nbsp;Debao Chen ,&nbsp;Zihan Su","doi":"10.1016/j.compenvurbsys.2024.102245","DOIUrl":null,"url":null,"abstract":"<div><div>Many scholars have established that facilities represented by Points-of-Interests (POIs) may function as crime generators and attractors, influencing criminal activities. While existing measurements of POIs primarily rely on quantitative counts, this count-based approach overlooks the spatial arrangement of POIs within an area, which can also contribute to crime. This paper introduces two methods to capture the spatial arrangement characteristics of POIs. One is called the normalized Shannon Voronoi Diagram-based Entropy (<em>n_SVDE</em>). A Voronoi diagram is constructed based on the spatial distributions of POIs in an area, resulting in polygons, each corresponding one POI. The area proportions of these polygons are then used to calculate Shannon Entropy. A low entropy value indicates a clustering pattern, while a high value reflects a dispersed distribution. The other is the average nearest neighbor distance ratio (<em>ANN_ratio</em>). It is a ratio of the average of the nearest distances of POIs in an area over the expected average. The effectiveness of these two methods is tested by using negative binominal models to explain street robberies in Cincinnati. Our findings show that the <em>n_SVDE</em> significantly explains street robbery, while the <em>ANN_ratio</em> shows no statistical significance. Specifically, a less clustered spatial distribution of POIs is positively associated with an increased likelihood of crime events, while a highly clustered distribution corresponds to a lower likelihood of crime. This study represents one of the pioneering implementations in explicitly examining the spatial configuration of POIs, contributing new insights into environmental criminology and providing valuable empirical evidence for enhancing place management and optimizing police patrols.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"117 ","pages":"Article 102245"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing the spatial arrangement of POIs in crime modeling\",\"authors\":\"Lin Liu ,&nbsp;Xin Gu ,&nbsp;Minxuan Lan ,&nbsp;Hanlin Zhou ,&nbsp;Debao Chen ,&nbsp;Zihan Su\",\"doi\":\"10.1016/j.compenvurbsys.2024.102245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many scholars have established that facilities represented by Points-of-Interests (POIs) may function as crime generators and attractors, influencing criminal activities. While existing measurements of POIs primarily rely on quantitative counts, this count-based approach overlooks the spatial arrangement of POIs within an area, which can also contribute to crime. This paper introduces two methods to capture the spatial arrangement characteristics of POIs. One is called the normalized Shannon Voronoi Diagram-based Entropy (<em>n_SVDE</em>). A Voronoi diagram is constructed based on the spatial distributions of POIs in an area, resulting in polygons, each corresponding one POI. The area proportions of these polygons are then used to calculate Shannon Entropy. A low entropy value indicates a clustering pattern, while a high value reflects a dispersed distribution. The other is the average nearest neighbor distance ratio (<em>ANN_ratio</em>). It is a ratio of the average of the nearest distances of POIs in an area over the expected average. The effectiveness of these two methods is tested by using negative binominal models to explain street robberies in Cincinnati. Our findings show that the <em>n_SVDE</em> significantly explains street robbery, while the <em>ANN_ratio</em> shows no statistical significance. Specifically, a less clustered spatial distribution of POIs is positively associated with an increased likelihood of crime events, while a highly clustered distribution corresponds to a lower likelihood of crime. This study represents one of the pioneering implementations in explicitly examining the spatial configuration of POIs, contributing new insights into environmental criminology and providing valuable empirical evidence for enhancing place management and optimizing police patrols.</div></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"117 \",\"pages\":\"Article 102245\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524001741\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001741","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

许多学者已经确定,以利益点(poi)为代表的设施可以作为犯罪的产生者和吸引者,影响犯罪活动。虽然现有的poi测量主要依赖于定量计数,但这种基于计数的方法忽略了poi在一个区域内的空间排列,这也可能导致犯罪。本文介绍了两种捕获poi空间排列特征的方法。一种是基于归一化Shannon Voronoi图的熵(n_SVDE)。Voronoi图是基于一个区域内POI的空间分布构造的,生成多边形,每个多边形对应一个POI。然后用这些多边形的面积比例来计算香农熵。低熵值表示聚类模式,高熵值表示分散分布。另一个是平均最近邻距离比(ANN_ratio)。它是一个地区内poi最近距离的平均值与预期平均值之比。通过使用负二项模型来解释辛辛那提街头抢劫,检验了这两种方法的有效性。我们的研究结果表明,n_SVDE显著解释了街头抢劫,而ANN_ratio没有统计学意义。具体来说,poi的空间分布聚集度越低,犯罪事件发生的可能性越高,而高度聚集的分布则对应着犯罪事件发生的可能性越低。该研究是明确考察犯罪地点空间配置的先驱之一,为环境犯罪学提供了新的见解,并为加强场所管理和优化警察巡逻提供了宝贵的经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing the spatial arrangement of POIs in crime modeling
Many scholars have established that facilities represented by Points-of-Interests (POIs) may function as crime generators and attractors, influencing criminal activities. While existing measurements of POIs primarily rely on quantitative counts, this count-based approach overlooks the spatial arrangement of POIs within an area, which can also contribute to crime. This paper introduces two methods to capture the spatial arrangement characteristics of POIs. One is called the normalized Shannon Voronoi Diagram-based Entropy (n_SVDE). A Voronoi diagram is constructed based on the spatial distributions of POIs in an area, resulting in polygons, each corresponding one POI. The area proportions of these polygons are then used to calculate Shannon Entropy. A low entropy value indicates a clustering pattern, while a high value reflects a dispersed distribution. The other is the average nearest neighbor distance ratio (ANN_ratio). It is a ratio of the average of the nearest distances of POIs in an area over the expected average. The effectiveness of these two methods is tested by using negative binominal models to explain street robberies in Cincinnati. Our findings show that the n_SVDE significantly explains street robbery, while the ANN_ratio shows no statistical significance. Specifically, a less clustered spatial distribution of POIs is positively associated with an increased likelihood of crime events, while a highly clustered distribution corresponds to a lower likelihood of crime. This study represents one of the pioneering implementations in explicitly examining the spatial configuration of POIs, contributing new insights into environmental criminology and providing valuable empirical evidence for enhancing place management and optimizing police patrols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信