拟线性积分代数方程数值解的一种算法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Mikhail Bulatov , Tatiana Indutskaya , Liubov Solovarova
{"title":"拟线性积分代数方程数值解的一种算法","authors":"Mikhail Bulatov ,&nbsp;Tatiana Indutskaya ,&nbsp;Liubov Solovarova","doi":"10.1016/j.apnum.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses interrelated integral nonlinear Volterra equations of the first and second kinds. Combining them, we obtain a system of integral equations with an identically degenerate matrix multiplying by the main part, which is usually called integral-algebraic equations. We highlight the fundamental features of the problems under consideration, namely their ill-posedness. We give conditions for the existence of a unique sufficiently smooth solution in terms of matrix pencils and propose an algorithm for their numerical solution, which is based on the simplest quadrature formula and linearization of a nonlinear integrand. Illustrative examples and results of numerical calculations of test examples are given.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 348-355"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an algorithm for the numerical solution of quasilinear integral-algebraic equations\",\"authors\":\"Mikhail Bulatov ,&nbsp;Tatiana Indutskaya ,&nbsp;Liubov Solovarova\",\"doi\":\"10.1016/j.apnum.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article addresses interrelated integral nonlinear Volterra equations of the first and second kinds. Combining them, we obtain a system of integral equations with an identically degenerate matrix multiplying by the main part, which is usually called integral-algebraic equations. We highlight the fundamental features of the problems under consideration, namely their ill-posedness. We give conditions for the existence of a unique sufficiently smooth solution in terms of matrix pencils and propose an algorithm for their numerical solution, which is based on the simplest quadrature formula and linearization of a nonlinear integrand. Illustrative examples and results of numerical calculations of test examples are given.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"208 \",\"pages\":\"Pages 348-355\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002745\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了第一类和第二类相互关联的积分非线性Volterra方程。将它们结合起来,我们得到了一个同退化矩阵乘上主部分的积分方程组,通常称为积分代数方程。我们强调正在审议的问题的基本特征,即它们的不稳定性。给出了矩阵铅笔的唯一充分光滑解的存在条件,并基于最简单的正交公式和非线性被积函数的线性化,给出了其数值解的一种算法。给出了实例的说明和数值计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an algorithm for the numerical solution of quasilinear integral-algebraic equations
This article addresses interrelated integral nonlinear Volterra equations of the first and second kinds. Combining them, we obtain a system of integral equations with an identically degenerate matrix multiplying by the main part, which is usually called integral-algebraic equations. We highlight the fundamental features of the problems under consideration, namely their ill-posedness. We give conditions for the existence of a unique sufficiently smooth solution in terms of matrix pencils and propose an algorithm for their numerical solution, which is based on the simplest quadrature formula and linearization of a nonlinear integrand. Illustrative examples and results of numerical calculations of test examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信