基于机器学习的预测模型对胃癌年度监测内镜检查费用的影响

iGIE Pub Date : 2024-12-01 DOI:10.1016/j.igie.2024.09.003
Junya Arai MD, PhD , Atsushi Miyawaki MD, PhD , Yoku Hayakawa MD, PhD , Tomonori Aoki MD, PhD , Ryota Niikura MD, PhD , Hiroaki Fujiwara MD, PhD , Tetsuo Ushiku MD, PhD , Masato Kasuga MD, PhD , Mitsuhiro Fujishiro MD, PhD
{"title":"基于机器学习的预测模型对胃癌年度监测内镜检查费用的影响","authors":"Junya Arai MD, PhD ,&nbsp;Atsushi Miyawaki MD, PhD ,&nbsp;Yoku Hayakawa MD, PhD ,&nbsp;Tomonori Aoki MD, PhD ,&nbsp;Ryota Niikura MD, PhD ,&nbsp;Hiroaki Fujiwara MD, PhD ,&nbsp;Tetsuo Ushiku MD, PhD ,&nbsp;Masato Kasuga MD, PhD ,&nbsp;Mitsuhiro Fujishiro MD, PhD","doi":"10.1016/j.igie.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Aims</h3><div>In this study, we assessed our machine learning (ML)-based model's impact on reducing annual surveillance endoscopy costs for detecting gastric cancer (GC).</div></div><div><h3>Methods</h3><div>We analyzed 1099 patients with chronic gastritis undergoing annual EGD and randomly divided them into training and test sets (4:1). Using gradient-boosting decision trees and incorporating patient characteristics, we developed the ML model. In the test sets, we compared the EGD number needed to screen (NNS) for 1 GC, cost, and GC detection rate across different risk stratification strategies.</div></div><div><h3>Results</h3><div>The ML-selected high-risk cohort demonstrated low NNS values, low total cost, low cost per 1 GC, and high GC detection rates compared with alternative risk stratification approaches, including operative link for gastric atrophy assessment and operative link for gastric intestinal metaplasia assessment.</div></div><div><h3>Conclusions</h3><div>Our ML model holds promise in reducing endoscopy surveillance costs while maintaining a robust GC detection rate.</div></div>","PeriodicalId":100652,"journal":{"name":"iGIE","volume":"3 4","pages":"Pages 463-467"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of a machine learning–based prediction model on annual surveillance endoscopy costs for detecting gastric cancer\",\"authors\":\"Junya Arai MD, PhD ,&nbsp;Atsushi Miyawaki MD, PhD ,&nbsp;Yoku Hayakawa MD, PhD ,&nbsp;Tomonori Aoki MD, PhD ,&nbsp;Ryota Niikura MD, PhD ,&nbsp;Hiroaki Fujiwara MD, PhD ,&nbsp;Tetsuo Ushiku MD, PhD ,&nbsp;Masato Kasuga MD, PhD ,&nbsp;Mitsuhiro Fujishiro MD, PhD\",\"doi\":\"10.1016/j.igie.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Aims</h3><div>In this study, we assessed our machine learning (ML)-based model's impact on reducing annual surveillance endoscopy costs for detecting gastric cancer (GC).</div></div><div><h3>Methods</h3><div>We analyzed 1099 patients with chronic gastritis undergoing annual EGD and randomly divided them into training and test sets (4:1). Using gradient-boosting decision trees and incorporating patient characteristics, we developed the ML model. In the test sets, we compared the EGD number needed to screen (NNS) for 1 GC, cost, and GC detection rate across different risk stratification strategies.</div></div><div><h3>Results</h3><div>The ML-selected high-risk cohort demonstrated low NNS values, low total cost, low cost per 1 GC, and high GC detection rates compared with alternative risk stratification approaches, including operative link for gastric atrophy assessment and operative link for gastric intestinal metaplasia assessment.</div></div><div><h3>Conclusions</h3><div>Our ML model holds promise in reducing endoscopy surveillance costs while maintaining a robust GC detection rate.</div></div>\",\"PeriodicalId\":100652,\"journal\":{\"name\":\"iGIE\",\"volume\":\"3 4\",\"pages\":\"Pages 463-467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iGIE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949708624001183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iGIE","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949708624001183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的在本研究中,我们评估了基于机器学习(ML)的模型对降低胃癌(GC)年度监测内窥镜检查成本的影响。方法对每年行EGD的慢性胃炎患者1099例进行分析,随机分为训练组和测试组(4:1)。使用梯度增强决策树并结合患者特征,我们开发了ML模型。在测试集中,我们比较了不同风险分层策略中筛选1 GC所需的EGD数(NNS)、成本和GC检出率。结果与其他风险分层方法(包括胃萎缩评估的手术环节和胃肠化生评估的手术环节)相比,ml选择的高危队列表现出低NNS值、低总成本、低每GC成本和高GC检出率。结论sour ML模型在降低内窥镜监测成本的同时保持了良好的气相色谱检出率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of a machine learning–based prediction model on annual surveillance endoscopy costs for detecting gastric cancer

Background and Aims

In this study, we assessed our machine learning (ML)-based model's impact on reducing annual surveillance endoscopy costs for detecting gastric cancer (GC).

Methods

We analyzed 1099 patients with chronic gastritis undergoing annual EGD and randomly divided them into training and test sets (4:1). Using gradient-boosting decision trees and incorporating patient characteristics, we developed the ML model. In the test sets, we compared the EGD number needed to screen (NNS) for 1 GC, cost, and GC detection rate across different risk stratification strategies.

Results

The ML-selected high-risk cohort demonstrated low NNS values, low total cost, low cost per 1 GC, and high GC detection rates compared with alternative risk stratification approaches, including operative link for gastric atrophy assessment and operative link for gastric intestinal metaplasia assessment.

Conclusions

Our ML model holds promise in reducing endoscopy surveillance costs while maintaining a robust GC detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信