一般模的一般三元二次同余的小解

IF 1.2 3区 数学 Q1 MATHEMATICS
Stephan Baier, Aishik Chattopadhyay
{"title":"一般模的一般三元二次同余的小解","authors":"Stephan Baier,&nbsp;Aishik Chattopadhyay","doi":"10.1016/j.ffa.2025.102571","DOIUrl":null,"url":null,"abstract":"<div><div>We study small non-trivial solutions of quadratic congruences of the form <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≡</mo><mn>0</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>q</mi></math></span>, with <em>q</em> being an odd natural number, in an average sense. This extends previous work of the authors in which they considered the case of prime power moduli <em>q</em>. Above, <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is arbitrary but fixed and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is variable, and we assume that <span><math><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We show that for all <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> modulo <em>q</em> which are coprime to <em>q</em> except for a small number of <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>'s, an asymptotic formula for the number of solutions <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> to the congruence <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≡</mo><mn>0</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>q</mi></math></span> with <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>|</mo><mo>}</mo><mo>≤</mo><mi>N</mi></math></span> and <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> holds if <span><math><mi>N</mi><mo>≥</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>11</mn><mo>/</mo><mn>24</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> and <em>q</em> is large enough. It is of significance that we break the barrier 1/2 in the above exponent. Key tools in our work are Burgess's estimate for character sums over short intervals and Heath-Brown's estimate for character sums with binary quadratic forms over small regions whose proofs depend on the Riemann hypothesis for curves over finite fields. We also formulate a refined conjecture about the size of the smallest solution of a ternary quadratic congruence, using information about the Diophantine properties of its coefficients.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102571"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small solutions of generic ternary quadratic congruences to general moduli\",\"authors\":\"Stephan Baier,&nbsp;Aishik Chattopadhyay\",\"doi\":\"10.1016/j.ffa.2025.102571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study small non-trivial solutions of quadratic congruences of the form <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≡</mo><mn>0</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>q</mi></math></span>, with <em>q</em> being an odd natural number, in an average sense. This extends previous work of the authors in which they considered the case of prime power moduli <em>q</em>. Above, <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is arbitrary but fixed and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is variable, and we assume that <span><math><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We show that for all <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> modulo <em>q</em> which are coprime to <em>q</em> except for a small number of <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>'s, an asymptotic formula for the number of solutions <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> to the congruence <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>3</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≡</mo><mn>0</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>q</mi></math></span> with <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>|</mo><mo>}</mo><mo>≤</mo><mi>N</mi></math></span> and <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> holds if <span><math><mi>N</mi><mo>≥</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>11</mn><mo>/</mo><mn>24</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> and <em>q</em> is large enough. It is of significance that we break the barrier 1/2 in the above exponent. Key tools in our work are Burgess's estimate for character sums over short intervals and Heath-Brown's estimate for character sums with binary quadratic forms over small regions whose proofs depend on the Riemann hypothesis for curves over finite fields. We also formulate a refined conjecture about the size of the smallest solution of a ternary quadratic congruence, using information about the Diophantine properties of its coefficients.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"103 \",\"pages\":\"Article 102571\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000012\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了形式为x12+α2x22+α3x32的二次同余的小非平凡解≡0modq,其中q是奇数,在平均意义上。这扩展了先前作者考虑素数幂模q的情况。上面,α2是任意但固定的,α3是可变的,我们假设(α2α3,q)=1。我们证明了除少数α3外,所有α3模q与q互质,当N≥q11/24+ε且q足够大时,对于x12+α2x22+α3x32的同余项(x1,x2,x3)≡0modq且max (|x1|,|x2|,|x3|}≤N且(x3,q)=1的解(x1,x2,x3)个数的渐近公式成立。我们在上述指数中突破了1/2的障碍是有意义的。我们工作中的关键工具是Burgess对短间隔上字符和的估计和Heath-Brown对小区域上二元二次型字符和的估计,其证明依赖于有限域上曲线的Riemann假设。我们还利用其系数的丢番图性质的信息,提出了一个关于三元二次同余最小解大小的精细猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small solutions of generic ternary quadratic congruences to general moduli
We study small non-trivial solutions of quadratic congruences of the form x12+α2x22+α3x320modq, with q being an odd natural number, in an average sense. This extends previous work of the authors in which they considered the case of prime power moduli q. Above, α2 is arbitrary but fixed and α3 is variable, and we assume that (α2α3,q)=1. We show that for all α3 modulo q which are coprime to q except for a small number of α3's, an asymptotic formula for the number of solutions (x1,x2,x3) to the congruence x12+α2x22+α3x320modq with max{|x1|,|x2|,|x3|}N and (x3,q)=1 holds if Nq11/24+ε and q is large enough. It is of significance that we break the barrier 1/2 in the above exponent. Key tools in our work are Burgess's estimate for character sums over short intervals and Heath-Brown's estimate for character sums with binary quadratic forms over small regions whose proofs depend on the Riemann hypothesis for curves over finite fields. We also formulate a refined conjecture about the size of the smallest solution of a ternary quadratic congruence, using information about the Diophantine properties of its coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信