对于Fpn上的二次函数,ccz等价但ea不等价的函数

IF 1.2 3区 数学 Q1 MATHEMATICS
Jaeseong Jeong , Namhun Koo , Soonhak Kwon
{"title":"对于Fpn上的二次函数,ccz等价但ea不等价的函数","authors":"Jaeseong Jeong ,&nbsp;Namhun Koo ,&nbsp;Soonhak Kwon","doi":"10.1016/j.ffa.2025.102574","DOIUrl":null,"url":null,"abstract":"<div><div>For a given function <em>F</em> from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to <em>F</em> is a very important and interesting problem. For example, Kölsch <span><span>[33]</span></span> showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mrow><mi>Tr</mi></mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>9</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) <span><span>[12]</span></span>, <span><span>[14]</span></span> found functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. In this paper, when a given function <em>F</em> has a component function which has a linear structure, we present functions which are CCZ-equivalent to <em>F</em>, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to <em>F</em>. As a consequence, for every quadratic function <em>F</em> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>) with nonlinearity greater than 0 and differential uniformity not exceeding <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. Also for every non-planar quadratic function on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> <span><math><mo>(</mo><mi>p</mi><mo>&gt;</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>|</mo><mo>≤</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and differential uniformity not exceeding <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. As an application, for a proper divisor <em>m</em> of <em>n</em>, we present many examples of <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-functions <em>F</em> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> such that the CCZ-equivalence class of <em>F</em> is strictly larger than the EA-equivalence class of <em>F</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102574"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the functions which are CCZ-equivalent but not EA-equivalent to quadratic functions over Fpn\",\"authors\":\"Jaeseong Jeong ,&nbsp;Namhun Koo ,&nbsp;Soonhak Kwon\",\"doi\":\"10.1016/j.ffa.2025.102574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given function <em>F</em> from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to <em>F</em> is a very important and interesting problem. For example, Kölsch <span><span>[33]</span></span> showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mrow><mi>Tr</mi></mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>9</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) <span><span>[12]</span></span>, <span><span>[14]</span></span> found functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. In this paper, when a given function <em>F</em> has a component function which has a linear structure, we present functions which are CCZ-equivalent to <em>F</em>, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to <em>F</em>. As a consequence, for every quadratic function <em>F</em> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>) with nonlinearity greater than 0 and differential uniformity not exceeding <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. Also for every non-planar quadratic function on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> <span><math><mo>(</mo><mi>p</mi><mo>&gt;</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>|</mo><mo>≤</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and differential uniformity not exceeding <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. As an application, for a proper divisor <em>m</em> of <em>n</em>, we present many examples of <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-functions <em>F</em> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> such that the CCZ-equivalence class of <em>F</em> is strictly larger than the EA-equivalence class of <em>F</em>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"103 \",\"pages\":\"Article 102574\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000048\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定函数F从Fpn到自身,确定是否存在与F等价ccz但ea不等价的函数是一个非常重要和有趣的问题。例如,Kölsch[33]表明,不存在与逆函数等价的函数,而不存在与逆函数等价的函数。另一方面,对于Gold函数F(x)=x2i+1和F(x)=x3+Tr(x9) / F2n的情况,Budaghyan, Carlet和Pott(分别为Budaghyan, Carlet和Leander)[12],[14]发现了ccz等价但ea不等价于F的函数。在本文中,当给定函数F具有线性结构的分量函数时,我们给出了ccz等价于F的函数,如果满足合适的条件,因此,对于F2n (n≥4)上每一个非线性大于0且微分均匀性不超过2n−3的二次函数F,我们显式地构造出ccz等效但ea不等于F的函数。对于Fpn (p>2,n≥4)上每一个|WF|≤pn−1且微分均匀性不超过pn−3的非平面二次函数,作为一个应用,对于n的真因子m,我们给出了Fpn上的(n,m)函数F的许多例子,使得F的ccz等价类严格大于F的ea等价类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the functions which are CCZ-equivalent but not EA-equivalent to quadratic functions over Fpn
For a given function F from Fpn to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to F is a very important and interesting problem. For example, Kölsch [33] showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function F(x)=x2i+1 and F(x)=x3+Tr(x9) over F2n, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) [12], [14] found functions which are CCZ-equivalent but EA-inequivalent to F. In this paper, when a given function F has a component function which has a linear structure, we present functions which are CCZ-equivalent to F, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to F. As a consequence, for every quadratic function F on F2n (n4) with nonlinearity greater than 0 and differential uniformity not exceeding 2n3, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to F. Also for every non-planar quadratic function on Fpn (p>2,n4) with |WF|pn1 and differential uniformity not exceeding pn3, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to F. As an application, for a proper divisor m of n, we present many examples of (n,m)-functions F on Fpn such that the CCZ-equivalence class of F is strictly larger than the EA-equivalence class of F.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信