Yuting Jiang , Mengyao Fu , Jie Fang , Matti Rossi , Yuting Wang , Chee-Wee Tan
{"title":"基于先验领域知识的LDA-GMM-CorEx主题模型的研究","authors":"Yuting Jiang , Mengyao Fu , Jie Fang , Matti Rossi , Yuting Wang , Chee-Wee Tan","doi":"10.1016/j.im.2024.104097","DOIUrl":null,"url":null,"abstract":"<div><div>Embedding topic models with domain knowledge is deemed to be effective in bolstering the models’ interpretability. Nevertheless, contemporary topic modeling techniques introduced in past studies lack consideration for circumstances in which prior domain knowledge either does not exist or becomes obsolete quickly. Combining the latent Dirichlet allocation (LDA) with the Gaussian mixture model (GMM) and the anchor correlation explanation (CorEx) topic model, we advanced a novel LDA-GMM-CorEx topic modeling approach to enhance the domain knowledge model's adaptability and improve the interpretability of topic modeling. We further verified the effectiveness of our proposed topic modeling approach on two separate datasets from different domains, thereby attesting to its general applicability.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 2","pages":"Article 104097"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing an LDA-GMM-CorEx topic model with prior domain knowledge in information systems research\",\"authors\":\"Yuting Jiang , Mengyao Fu , Jie Fang , Matti Rossi , Yuting Wang , Chee-Wee Tan\",\"doi\":\"10.1016/j.im.2024.104097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Embedding topic models with domain knowledge is deemed to be effective in bolstering the models’ interpretability. Nevertheless, contemporary topic modeling techniques introduced in past studies lack consideration for circumstances in which prior domain knowledge either does not exist or becomes obsolete quickly. Combining the latent Dirichlet allocation (LDA) with the Gaussian mixture model (GMM) and the anchor correlation explanation (CorEx) topic model, we advanced a novel LDA-GMM-CorEx topic modeling approach to enhance the domain knowledge model's adaptability and improve the interpretability of topic modeling. We further verified the effectiveness of our proposed topic modeling approach on two separate datasets from different domains, thereby attesting to its general applicability.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"62 2\",\"pages\":\"Article 104097\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720624001794\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001794","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Advancing an LDA-GMM-CorEx topic model with prior domain knowledge in information systems research
Embedding topic models with domain knowledge is deemed to be effective in bolstering the models’ interpretability. Nevertheless, contemporary topic modeling techniques introduced in past studies lack consideration for circumstances in which prior domain knowledge either does not exist or becomes obsolete quickly. Combining the latent Dirichlet allocation (LDA) with the Gaussian mixture model (GMM) and the anchor correlation explanation (CorEx) topic model, we advanced a novel LDA-GMM-CorEx topic modeling approach to enhance the domain knowledge model's adaptability and improve the interpretability of topic modeling. We further verified the effectiveness of our proposed topic modeling approach on two separate datasets from different domains, thereby attesting to its general applicability.
期刊介绍:
Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.