海上风力机多斗套基础电流局部冲刷及预埋防护措施试验研究

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Jiale Li , Jijian Lian , Yaohua Guo , Xiaofeng Dong , Yang Gao
{"title":"海上风力机多斗套基础电流局部冲刷及预埋防护措施试验研究","authors":"Jiale Li ,&nbsp;Jijian Lian ,&nbsp;Yaohua Guo ,&nbsp;Xiaofeng Dong ,&nbsp;Yang Gao","doi":"10.1016/j.coastaleng.2025.104703","DOIUrl":null,"url":null,"abstract":"<div><div>The multi-bucket jacket foundations (MBJF) have been extensively applied in offshore wind farms in China. Scour significantly affects the in-situ stability of wide and shallow MBJF, but existing scour protection methods fail to adequately account for the structural and construction characteristics of wide, shallow buckets and their suction installation. Thus, their applicability to MBJF in harsh marine environments is limited. This study has proposed a pre-embedded protection method (referring to the placement of the bucket lid below the seabed to enhance the stability and safety of the foundation under scouring conditions) and designed detailed experiments. A 3D structured light depth measurement technique was employed to capture terrain morphology, and high-resolution elevation images were generated using point cloud reconstruction for scour analysis and statistics. This study has revealed the influence patterns of the lid elevation, inflow angle, flow intensity, and water depth on the current-induced scour characteristics and protection efficiency of MBJF with pre-embedded protection. Based on model test results, predictive formulas for maximum scour depth and scour extent under pre-embedded protection were derived and refined. The results indicate that pre-embedded protection measures are highly efficient under various lid elevations, inflow angles, flow intensities, and water depths. Notably, flow intensity is the most sensitive factor influencing scour characteristics. An increase in embedded depth reduces both maximum scour depth and scour extent, with protection efficiency reaching up to 52% and 70.1%, respectively, in certain cases. An extreme angle that generates the greatest scour depth is identified, which is 30° under the current experimental conditions. Moreover, an increase in flow intensity and a decrease in water depth both lead to an increase in scour depth, especially under live-bed scour conditions. These findings are of great significance for enhancing the stability and long-term operational safety of offshore wind turbine foundations, providing methodological and theoretical support for scour protection of similar foundations.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"198 ","pages":"Article 104703"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on current-induced local scour and pre-embedded protective measures of multi-bucket jacket foundation for offshore wind turbines\",\"authors\":\"Jiale Li ,&nbsp;Jijian Lian ,&nbsp;Yaohua Guo ,&nbsp;Xiaofeng Dong ,&nbsp;Yang Gao\",\"doi\":\"10.1016/j.coastaleng.2025.104703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The multi-bucket jacket foundations (MBJF) have been extensively applied in offshore wind farms in China. Scour significantly affects the in-situ stability of wide and shallow MBJF, but existing scour protection methods fail to adequately account for the structural and construction characteristics of wide, shallow buckets and their suction installation. Thus, their applicability to MBJF in harsh marine environments is limited. This study has proposed a pre-embedded protection method (referring to the placement of the bucket lid below the seabed to enhance the stability and safety of the foundation under scouring conditions) and designed detailed experiments. A 3D structured light depth measurement technique was employed to capture terrain morphology, and high-resolution elevation images were generated using point cloud reconstruction for scour analysis and statistics. This study has revealed the influence patterns of the lid elevation, inflow angle, flow intensity, and water depth on the current-induced scour characteristics and protection efficiency of MBJF with pre-embedded protection. Based on model test results, predictive formulas for maximum scour depth and scour extent under pre-embedded protection were derived and refined. The results indicate that pre-embedded protection measures are highly efficient under various lid elevations, inflow angles, flow intensities, and water depths. Notably, flow intensity is the most sensitive factor influencing scour characteristics. An increase in embedded depth reduces both maximum scour depth and scour extent, with protection efficiency reaching up to 52% and 70.1%, respectively, in certain cases. An extreme angle that generates the greatest scour depth is identified, which is 30° under the current experimental conditions. Moreover, an increase in flow intensity and a decrease in water depth both lead to an increase in scour depth, especially under live-bed scour conditions. These findings are of great significance for enhancing the stability and long-term operational safety of offshore wind turbine foundations, providing methodological and theoretical support for scour protection of similar foundations.</div></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"198 \",\"pages\":\"Article 104703\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383925000080\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000080","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

多筒夹套基础在海上风电场中得到了广泛的应用。冲刷作用显著影响宽浅组合梁的原位稳定性,但现有的冲刷防护方法未能充分考虑宽浅斗及其抽吸装置的结构和施工特点。因此,它们在恶劣海洋环境下对MBJF的适用性受到限制。本研究提出了预埋式保护方法(即将桶盖置于海床下方,以增强冲刷条件下基础的稳定性和安全性),并设计了详细的实验。采用三维结构光深度测量技术捕获地形形态,利用点云重建生成高分辨率高程图像进行冲刷分析和统计。研究揭示了井盖高度、入流角度、水流强度和水深对预埋保护MBJF流冲特性和防护效率的影响规律。基于模型试验结果,推导并细化了预埋保护下最大冲刷深度和冲刷程度的预测公式。结果表明,在不同的顶盖高度、入流角、水流强度和水深条件下,预埋防护措施都是高效的。值得注意的是,水流强度是影响冲刷特性最敏感的因素。随着埋置深度的增加,最大冲刷深度和冲刷程度均有所降低,在某些情况下保护效率可达52%和70.1%。确定了产生最大冲刷深度的极端角度,在当前实验条件下为30°。水流强度的增大和水深的减小都会导致冲刷深度的增大,特别是在活床冲刷条件下。研究结果对提高海上风电基础的稳定性和长期运行安全性具有重要意义,为同类基础的冲刷防护提供了方法和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on current-induced local scour and pre-embedded protective measures of multi-bucket jacket foundation for offshore wind turbines
The multi-bucket jacket foundations (MBJF) have been extensively applied in offshore wind farms in China. Scour significantly affects the in-situ stability of wide and shallow MBJF, but existing scour protection methods fail to adequately account for the structural and construction characteristics of wide, shallow buckets and their suction installation. Thus, their applicability to MBJF in harsh marine environments is limited. This study has proposed a pre-embedded protection method (referring to the placement of the bucket lid below the seabed to enhance the stability and safety of the foundation under scouring conditions) and designed detailed experiments. A 3D structured light depth measurement technique was employed to capture terrain morphology, and high-resolution elevation images were generated using point cloud reconstruction for scour analysis and statistics. This study has revealed the influence patterns of the lid elevation, inflow angle, flow intensity, and water depth on the current-induced scour characteristics and protection efficiency of MBJF with pre-embedded protection. Based on model test results, predictive formulas for maximum scour depth and scour extent under pre-embedded protection were derived and refined. The results indicate that pre-embedded protection measures are highly efficient under various lid elevations, inflow angles, flow intensities, and water depths. Notably, flow intensity is the most sensitive factor influencing scour characteristics. An increase in embedded depth reduces both maximum scour depth and scour extent, with protection efficiency reaching up to 52% and 70.1%, respectively, in certain cases. An extreme angle that generates the greatest scour depth is identified, which is 30° under the current experimental conditions. Moreover, an increase in flow intensity and a decrease in water depth both lead to an increase in scour depth, especially under live-bed scour conditions. These findings are of great significance for enhancing the stability and long-term operational safety of offshore wind turbine foundations, providing methodological and theoretical support for scour protection of similar foundations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信