使用延迟分离涡流模拟为数据驱动的湍流建模创建数据集:一个参数化几何的周期丘陵案例

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Davide Oberto , Davide Fransos , Stefano Berrone
{"title":"使用延迟分离涡流模拟为数据驱动的湍流建模创建数据集:一个参数化几何的周期丘陵案例","authors":"Davide Oberto ,&nbsp;Davide Fransos ,&nbsp;Stefano Berrone","doi":"10.1016/j.compfluid.2024.106506","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the emerging field of data-driven turbulence models, there is a lack of systematic high-fidelity datasets at flow configurations changing continuously with respect to geometrical/physical parameters. In this work, we investigate the possibility of using Delayed Detached Eddy Simulation (DDES) to generate reliable datasets in a significantly cheaper manner compared to the DNS or LES counterparts. To do that, we perform 25 simulations of the geometrically-parameterized periodic hills test case to deal with different hills steepnesses. We firstly check the accuracy of our results by comparing one simulation with the benchmark case of Xiao et al. Then, we use such database to train the turbulent viscosity-Vector Basis Neural Network (<span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-VBNN) data-driven turbulence model. The latter outperforms the classic <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> SST RANS model, proving that our generated dataset can be useful for data-driven turbulence modeling and opening the opportunity to exploit DDES to create systematic datasets for data-driven turbulence modeling.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106506"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Delayed Detached Eddy Simulation to create datasets for data-driven turbulence modeling: A periodic hills with parameterized geometry case\",\"authors\":\"Davide Oberto ,&nbsp;Davide Fransos ,&nbsp;Stefano Berrone\",\"doi\":\"10.1016/j.compfluid.2024.106506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the emerging field of data-driven turbulence models, there is a lack of systematic high-fidelity datasets at flow configurations changing continuously with respect to geometrical/physical parameters. In this work, we investigate the possibility of using Delayed Detached Eddy Simulation (DDES) to generate reliable datasets in a significantly cheaper manner compared to the DNS or LES counterparts. To do that, we perform 25 simulations of the geometrically-parameterized periodic hills test case to deal with different hills steepnesses. We firstly check the accuracy of our results by comparing one simulation with the benchmark case of Xiao et al. Then, we use such database to train the turbulent viscosity-Vector Basis Neural Network (<span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-VBNN) data-driven turbulence model. The latter outperforms the classic <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> SST RANS model, proving that our generated dataset can be useful for data-driven turbulence modeling and opening the opportunity to exploit DDES to create systematic datasets for data-driven turbulence modeling.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"288 \",\"pages\":\"Article 106506\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024003372\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003372","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尽管数据驱动的湍流模型领域正在兴起,但缺乏系统的高保真数据集来研究随几何/物理参数连续变化的流动构型。在这项工作中,我们研究了使用延迟分离涡流模拟(DDES)以比DNS或LES更便宜的方式生成可靠数据集的可能性。为此,我们执行了25次几何参数化周期性丘陵测试用例的模拟,以处理不同的丘陵陡度。我们首先通过将一个模拟与Xiao等人的基准案例进行比较来检查结果的准确性。然后,利用该数据库训练湍流粘度-向量基神经网络(νt-VBNN)数据驱动的湍流模型。后者优于经典的k−ω SST RANS模型,证明我们生成的数据集可以用于数据驱动的湍流建模,并为利用DDES为数据驱动的湍流建模创建系统数据集提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Delayed Detached Eddy Simulation to create datasets for data-driven turbulence modeling: A periodic hills with parameterized geometry case
Despite the emerging field of data-driven turbulence models, there is a lack of systematic high-fidelity datasets at flow configurations changing continuously with respect to geometrical/physical parameters. In this work, we investigate the possibility of using Delayed Detached Eddy Simulation (DDES) to generate reliable datasets in a significantly cheaper manner compared to the DNS or LES counterparts. To do that, we perform 25 simulations of the geometrically-parameterized periodic hills test case to deal with different hills steepnesses. We firstly check the accuracy of our results by comparing one simulation with the benchmark case of Xiao et al. Then, we use such database to train the turbulent viscosity-Vector Basis Neural Network (νt-VBNN) data-driven turbulence model. The latter outperforms the classic kω SST RANS model, proving that our generated dataset can be useful for data-driven turbulence modeling and opening the opportunity to exploit DDES to create systematic datasets for data-driven turbulence modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信