优化动态相似模型预测二维衰减湍流中SGS后向散射

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dandan Wang , Yu-xin Ren , Mengnan Ding
{"title":"优化动态相似模型预测二维衰减湍流中SGS后向散射","authors":"Dandan Wang ,&nbsp;Yu-xin Ren ,&nbsp;Mengnan Ding","doi":"10.1016/j.compfluid.2024.106497","DOIUrl":null,"url":null,"abstract":"<div><div>Large eddy simulation (LES) of two-dimensional (2D) turbulence is often used in the geostrophic flows. However, some basic dynamics underlying traditional SGS models are absent in 2D turbulence, e.g. the vortex stretching. Hence, this research proposes an optimized dynamic similarity model (DSM) for the SGS stress, which is constructed through the dynamic procedure based on the Germano identity. In addition, a modification is made to the dynamic mixed model (DMM) for the sake of realizability condition. The optimized DSM is justified in comparison with the DMM, through the a priori and a posteriori verifications, in the context of the 2D decaying turbulence with turbulent Reynolds number of <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> and turbulent Mach number of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span>. Special attention is paid to the consistency of the verification procedure, so that the filtering operations used in the direct numerical simulation (DNS) and LES are optimally equivalent. The SGS transport phenomena, especially the SGS backscatter, predicted by these two models are studied in detail. In addition, the optimized DSM and the DMM are extended for the modified SGS transport vectors of passive scalars to show their capability in calculating 2D turbulent mixing. The numerical results show the optimized DSM provides larger correlation coefficient, better locality, and stronger SGS backscsatter than the DMM does, and therefore it is more suitable for the LES of 2D turbulence.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106497"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized dynamic similarity models to predict SGS backscatter in 2D decaying turbulence\",\"authors\":\"Dandan Wang ,&nbsp;Yu-xin Ren ,&nbsp;Mengnan Ding\",\"doi\":\"10.1016/j.compfluid.2024.106497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large eddy simulation (LES) of two-dimensional (2D) turbulence is often used in the geostrophic flows. However, some basic dynamics underlying traditional SGS models are absent in 2D turbulence, e.g. the vortex stretching. Hence, this research proposes an optimized dynamic similarity model (DSM) for the SGS stress, which is constructed through the dynamic procedure based on the Germano identity. In addition, a modification is made to the dynamic mixed model (DMM) for the sake of realizability condition. The optimized DSM is justified in comparison with the DMM, through the a priori and a posteriori verifications, in the context of the 2D decaying turbulence with turbulent Reynolds number of <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> and turbulent Mach number of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span>. Special attention is paid to the consistency of the verification procedure, so that the filtering operations used in the direct numerical simulation (DNS) and LES are optimally equivalent. The SGS transport phenomena, especially the SGS backscatter, predicted by these two models are studied in detail. In addition, the optimized DSM and the DMM are extended for the modified SGS transport vectors of passive scalars to show their capability in calculating 2D turbulent mixing. The numerical results show the optimized DSM provides larger correlation coefficient, better locality, and stronger SGS backscsatter than the DMM does, and therefore it is more suitable for the LES of 2D turbulence.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"288 \",\"pages\":\"Article 106497\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024003281\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003281","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

二维湍流大涡模拟(LES)是地转流中常用的模拟方法。然而,传统的SGS模型在二维湍流中缺少一些基本的动力学特性,如涡旋拉伸。为此,本文提出了一种优化的基于Germano恒等式的SGS应力动态相似模型。此外,为了满足可实现条件,对动态混合模型(DMM)进行了修改。在湍流雷诺数Re=3.7×104、湍流马赫数Mt=0.1的二维衰减湍流条件下,通过先验和后验验证,优化后的DSM与DMM相比是合理的。特别注意验证程序的一致性,以便直接数值模拟(DNS)和LES中使用的过滤操作是最优等效的。详细研究了这两种模型预测的SGS输运现象,特别是SGS后向散射。此外,将优化后的DSM和DMM扩展到改进后的被动标量SGS输运向量,以显示其计算二维湍流混合的能力。数值结果表明,优化后的DSM比DMM具有更大的相关系数、更好的局部性和更强的SGS后向散射,因此更适合于二维湍流的LES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized dynamic similarity models to predict SGS backscatter in 2D decaying turbulence
Large eddy simulation (LES) of two-dimensional (2D) turbulence is often used in the geostrophic flows. However, some basic dynamics underlying traditional SGS models are absent in 2D turbulence, e.g. the vortex stretching. Hence, this research proposes an optimized dynamic similarity model (DSM) for the SGS stress, which is constructed through the dynamic procedure based on the Germano identity. In addition, a modification is made to the dynamic mixed model (DMM) for the sake of realizability condition. The optimized DSM is justified in comparison with the DMM, through the a priori and a posteriori verifications, in the context of the 2D decaying turbulence with turbulent Reynolds number of Re=3.7×104 and turbulent Mach number of Mt=0.1. Special attention is paid to the consistency of the verification procedure, so that the filtering operations used in the direct numerical simulation (DNS) and LES are optimally equivalent. The SGS transport phenomena, especially the SGS backscatter, predicted by these two models are studied in detail. In addition, the optimized DSM and the DMM are extended for the modified SGS transport vectors of passive scalars to show their capability in calculating 2D turbulent mixing. The numerical results show the optimized DSM provides larger correlation coefficient, better locality, and stronger SGS backscsatter than the DMM does, and therefore it is more suitable for the LES of 2D turbulence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信