基于注意力增强可分离残差网络的滚动轴承故障诊断

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Chuang Liang , Xuelin Mu , Xiaoguang Zhang , Fanfan Lu , Chengcheng Wang , Yubo Shao
{"title":"基于注意力增强可分离残差网络的滚动轴承故障诊断","authors":"Chuang Liang ,&nbsp;Xuelin Mu ,&nbsp;Xiaoguang Zhang ,&nbsp;Fanfan Lu ,&nbsp;Chengcheng Wang ,&nbsp;Yubo Shao","doi":"10.1016/j.jestch.2024.101930","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, with the quick development of industrial equipment automation, convolutional neural networks (CNN) have been broadly applied to the intelligent fault diagnosis of rolling bearings. In order to solve the problems of gradient vanishing, gradient explosion, and too many training parameters in deep convolutional networks that lead to low diagnostic accuracy and training efficiency of network models, a bearing fault diagnosis method based on an attention-augmented separable convolutional residual network (ASResnet) is proposed. First, the bearing vibration signal data is converted into a 2D grayscale map as an input to the network. Then, residual blocks with separable convolutions were constructed, allowing automatic learning of high-level representations from input images by stacking multiple separable convolutional residual blocks. Separable convolution effectively reduces the number of network parameters and improves computational speed. Finally, a feature extractor based on the Convolutional Block Attention Module (CBAM) is constructed so that the network focuses on the key feature regions to further improve the diagnostic performance. Validation was conducted using a Case Western Reserve University bearing dataset and three actual engineering datasets of production equipment in a cement plant. The experimental results show that ASResnet is able to improve the diagnostic accuracy and reduce the network training time of the CWRU dataset, and it also obtains a high accuracy rate in fault diagnosis for engineering applications in the cement production equipment industry.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"61 ","pages":"Article 101930"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced fault diagnosis of rolling bearings using attention-augmented separable residual networks\",\"authors\":\"Chuang Liang ,&nbsp;Xuelin Mu ,&nbsp;Xiaoguang Zhang ,&nbsp;Fanfan Lu ,&nbsp;Chengcheng Wang ,&nbsp;Yubo Shao\",\"doi\":\"10.1016/j.jestch.2024.101930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, with the quick development of industrial equipment automation, convolutional neural networks (CNN) have been broadly applied to the intelligent fault diagnosis of rolling bearings. In order to solve the problems of gradient vanishing, gradient explosion, and too many training parameters in deep convolutional networks that lead to low diagnostic accuracy and training efficiency of network models, a bearing fault diagnosis method based on an attention-augmented separable convolutional residual network (ASResnet) is proposed. First, the bearing vibration signal data is converted into a 2D grayscale map as an input to the network. Then, residual blocks with separable convolutions were constructed, allowing automatic learning of high-level representations from input images by stacking multiple separable convolutional residual blocks. Separable convolution effectively reduces the number of network parameters and improves computational speed. Finally, a feature extractor based on the Convolutional Block Attention Module (CBAM) is constructed so that the network focuses on the key feature regions to further improve the diagnostic performance. Validation was conducted using a Case Western Reserve University bearing dataset and three actual engineering datasets of production equipment in a cement plant. The experimental results show that ASResnet is able to improve the diagnostic accuracy and reduce the network training time of the CWRU dataset, and it also obtains a high accuracy rate in fault diagnosis for engineering applications in the cement production equipment industry.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"61 \",\"pages\":\"Article 101930\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098624003161\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624003161","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着工业设备自动化的快速发展,卷积神经网络(CNN)被广泛应用于滚动轴承的智能故障诊断。为了解决深度卷积网络中梯度消失、梯度爆炸以及训练参数过多导致网络模型诊断准确率和训练效率低的问题,提出了一种基于注意增强可分离卷积残差网络(ASResnet)的轴承故障诊断方法。首先,将轴承振动信号数据转换成二维灰度图作为网络的输入。然后,构建具有可分离卷积的残差块,通过叠加多个可分离卷积残差块,从输入图像中自动学习高级表示。可分离卷积有效地减少了网络参数的数量,提高了计算速度。最后,构建基于卷积块注意模块(CBAM)的特征提取器,使网络集中在关键特征区域,进一步提高诊断性能。使用凯斯西储大学的轴承数据集和水泥厂生产设备的三个实际工程数据集进行验证。实验结果表明,ASResnet能够提高CWRU数据集的诊断准确率,减少网络训练时间,并在水泥生产设备行业的工程应用中获得较高的故障诊断准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced fault diagnosis of rolling bearings using attention-augmented separable residual networks
Recently, with the quick development of industrial equipment automation, convolutional neural networks (CNN) have been broadly applied to the intelligent fault diagnosis of rolling bearings. In order to solve the problems of gradient vanishing, gradient explosion, and too many training parameters in deep convolutional networks that lead to low diagnostic accuracy and training efficiency of network models, a bearing fault diagnosis method based on an attention-augmented separable convolutional residual network (ASResnet) is proposed. First, the bearing vibration signal data is converted into a 2D grayscale map as an input to the network. Then, residual blocks with separable convolutions were constructed, allowing automatic learning of high-level representations from input images by stacking multiple separable convolutional residual blocks. Separable convolution effectively reduces the number of network parameters and improves computational speed. Finally, a feature extractor based on the Convolutional Block Attention Module (CBAM) is constructed so that the network focuses on the key feature regions to further improve the diagnostic performance. Validation was conducted using a Case Western Reserve University bearing dataset and three actual engineering datasets of production equipment in a cement plant. The experimental results show that ASResnet is able to improve the diagnostic accuracy and reduce the network training time of the CWRU dataset, and it also obtains a high accuracy rate in fault diagnosis for engineering applications in the cement production equipment industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信