倒置钙钛矿太阳能组件的二维/三维钙钛矿和表面偶极子双层界面工程

IF 42.9 Q1 ELECTROCHEMISTRY
Jiarong Wang , Leyu Bi , Xiaofeng Huang , Qifan Feng , Ming Liu , Mingqian Chen , Yidan An , Wenlin Jiang , Francis R. Lin , Qiang Fu , Alex K.-Y. Jen
{"title":"倒置钙钛矿太阳能组件的二维/三维钙钛矿和表面偶极子双层界面工程","authors":"Jiarong Wang ,&nbsp;Leyu Bi ,&nbsp;Xiaofeng Huang ,&nbsp;Qifan Feng ,&nbsp;Ming Liu ,&nbsp;Mingqian Chen ,&nbsp;Yidan An ,&nbsp;Wenlin Jiang ,&nbsp;Francis R. Lin ,&nbsp;Qiang Fu ,&nbsp;Alex K.-Y. Jen","doi":"10.1016/j.esci.2024.100308","DOIUrl":null,"url":null,"abstract":"<div><div>The persistency of passivation and scalable uniformity are vital issues that limit the improvement of performance and stability of large-area perovskite solar modules (PSMs). Here, we design a bilayer interface engineering strategy that takes advantage of the stability and passivation ability of low-dimensional perovskite and the dipole layer. Introducing phenethylammonium iodide (PEAI) can form 2D/3D heterojunctions on the perovskite surface and effectively passivate defects of perovskite film. Interestingly, the upper piperazinium iodide (PI) layer can still form surface dipoles on the 2D/3D perovskite surface to optimize energy-level alignment. Moreover, the bilayer interface engineering enables large-area perovskite films with uniform surface morphology, lower trap-state density and stability against environmental stress factors. The final devices achieved a small-area PCE of 25.20% and a large-area (1 ​cm<sup>2</sup>) PCE of 23.96%. A perovskite mini-module (5 ​× ​5 ​cm<sup>2</sup> with an active area of 14.28 ​cm<sup>2</sup>) could also be fabricated to achieve a PCE of 23.19%, ranking it among the highest for inverted PSMs. Additionally, the device could retain over 93% of its initial efficiency after MPP tracking at 45 ​°C for 1280 ​h. This study successfully demonstrates a bilayer interface engineering with respective functions, offering valuable insights for producing efficient and stable large-area PSCs.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 6","pages":"Article 100308"},"PeriodicalIF":42.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules\",\"authors\":\"Jiarong Wang ,&nbsp;Leyu Bi ,&nbsp;Xiaofeng Huang ,&nbsp;Qifan Feng ,&nbsp;Ming Liu ,&nbsp;Mingqian Chen ,&nbsp;Yidan An ,&nbsp;Wenlin Jiang ,&nbsp;Francis R. Lin ,&nbsp;Qiang Fu ,&nbsp;Alex K.-Y. Jen\",\"doi\":\"10.1016/j.esci.2024.100308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The persistency of passivation and scalable uniformity are vital issues that limit the improvement of performance and stability of large-area perovskite solar modules (PSMs). Here, we design a bilayer interface engineering strategy that takes advantage of the stability and passivation ability of low-dimensional perovskite and the dipole layer. Introducing phenethylammonium iodide (PEAI) can form 2D/3D heterojunctions on the perovskite surface and effectively passivate defects of perovskite film. Interestingly, the upper piperazinium iodide (PI) layer can still form surface dipoles on the 2D/3D perovskite surface to optimize energy-level alignment. Moreover, the bilayer interface engineering enables large-area perovskite films with uniform surface morphology, lower trap-state density and stability against environmental stress factors. The final devices achieved a small-area PCE of 25.20% and a large-area (1 ​cm<sup>2</sup>) PCE of 23.96%. A perovskite mini-module (5 ​× ​5 ​cm<sup>2</sup> with an active area of 14.28 ​cm<sup>2</sup>) could also be fabricated to achieve a PCE of 23.19%, ranking it among the highest for inverted PSMs. Additionally, the device could retain over 93% of its initial efficiency after MPP tracking at 45 ​°C for 1280 ​h. This study successfully demonstrates a bilayer interface engineering with respective functions, offering valuable insights for producing efficient and stable large-area PSCs.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 6\",\"pages\":\"Article 100308\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724001010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

钝化的持久性和可扩展的均匀性是限制大面积钙钛矿太阳能组件(psm)性能和稳定性提高的关键问题。在这里,我们设计了一种利用低维钙钛矿和偶极子层的稳定性和钝化能力的双层界面工程策略。引入苯乙基碘化铵(PEAI)可以在钙钛矿表面形成2D/3D异质结,有效钝化钙钛矿膜缺陷。有趣的是,上层的碘化哌嗪(PI)层仍然可以在2D/3D钙钛矿表面形成表面偶极子,以优化能级排列。此外,双层界面工程使大面积钙钛矿膜具有均匀的表面形貌,较低的陷阱态密度和抗环境应力因素的稳定性。最终器件的小面积PCE为25.20%,大面积(1 cm2) PCE为23.96%。一个钙钛矿迷你模块(5 × 5 cm2,有效面积为14.28 cm2)也可以被制造出来,达到23.19%的PCE,是倒置psm中最高的。此外,在45°C下MPP跟踪1280小时后,该装置可以保持93%以上的初始效率。该研究成功地展示了具有各自功能的双层界面工程,为生产高效稳定的大面积PSCs提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules

Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules
The persistency of passivation and scalable uniformity are vital issues that limit the improvement of performance and stability of large-area perovskite solar modules (PSMs). Here, we design a bilayer interface engineering strategy that takes advantage of the stability and passivation ability of low-dimensional perovskite and the dipole layer. Introducing phenethylammonium iodide (PEAI) can form 2D/3D heterojunctions on the perovskite surface and effectively passivate defects of perovskite film. Interestingly, the upper piperazinium iodide (PI) layer can still form surface dipoles on the 2D/3D perovskite surface to optimize energy-level alignment. Moreover, the bilayer interface engineering enables large-area perovskite films with uniform surface morphology, lower trap-state density and stability against environmental stress factors. The final devices achieved a small-area PCE of 25.20% and a large-area (1 ​cm2) PCE of 23.96%. A perovskite mini-module (5 ​× ​5 ​cm2 with an active area of 14.28 ​cm2) could also be fabricated to achieve a PCE of 23.19%, ranking it among the highest for inverted PSMs. Additionally, the device could retain over 93% of its initial efficiency after MPP tracking at 45 ​°C for 1280 ​h. This study successfully demonstrates a bilayer interface engineering with respective functions, offering valuable insights for producing efficient and stable large-area PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信