Barış Kavas , Efe C. Balta , Michael R. Tucker , Raamadaas Krishnadas , Alisa Rupenyan , John Lygeros , Markus Bambach
{"title":"基于贝叶斯优化的原位控制器自整定用于激光粉末床熔合过程闭环反馈控制","authors":"Barış Kavas , Efe C. Balta , Michael R. Tucker , Raamadaas Krishnadas , Alisa Rupenyan , John Lygeros , Markus Bambach","doi":"10.1016/j.addma.2025.104641","DOIUrl":null,"url":null,"abstract":"<div><div>Laser powder bed fusion (LPBF) additive manufacturing (AM) traditionally relies on static parameter assignment in an open loop, which can lead to defects when faced with complex thermal histories and process variability. Closed-loop control offers a promising alternative that can enhance stability and mitigate defects. However, controller performance relies heavily on precise parameter tuning, a process that is typically manual and system-specific. This study employs Bayesian Optimization (BO) as an automated, sample-efficient method for tuning in-layer controllers in LPBF, leveraging the repetitive nature of the process for either online (in-process) or offline (pre-process) tuning. We experimentally apply BO to tune an in-layer PI controller to modulate laser power, assessing its performance on wedge geometries prone to overheating. The results show that BO significantly reduces overheating, outperforming uncontrolled settings. Notably, this study presents the first microstructural analysis of parts produced with in-layer controlled tuning, identifying lack-of-fusion porosities caused by the controller’s corrective adjustments. In summary, BO demonstrates strong potential for automated controller tuning in LPBF, with implications for broader applications in AM, suggesting a path towards more adaptive and robust control across diverse machines and materials.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"99 ","pages":"Article 104641"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ controller autotuning by Bayesian optimization for closed-loop feedback control of laser powder bed fusion process\",\"authors\":\"Barış Kavas , Efe C. Balta , Michael R. Tucker , Raamadaas Krishnadas , Alisa Rupenyan , John Lygeros , Markus Bambach\",\"doi\":\"10.1016/j.addma.2025.104641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser powder bed fusion (LPBF) additive manufacturing (AM) traditionally relies on static parameter assignment in an open loop, which can lead to defects when faced with complex thermal histories and process variability. Closed-loop control offers a promising alternative that can enhance stability and mitigate defects. However, controller performance relies heavily on precise parameter tuning, a process that is typically manual and system-specific. This study employs Bayesian Optimization (BO) as an automated, sample-efficient method for tuning in-layer controllers in LPBF, leveraging the repetitive nature of the process for either online (in-process) or offline (pre-process) tuning. We experimentally apply BO to tune an in-layer PI controller to modulate laser power, assessing its performance on wedge geometries prone to overheating. The results show that BO significantly reduces overheating, outperforming uncontrolled settings. Notably, this study presents the first microstructural analysis of parts produced with in-layer controlled tuning, identifying lack-of-fusion porosities caused by the controller’s corrective adjustments. In summary, BO demonstrates strong potential for automated controller tuning in LPBF, with implications for broader applications in AM, suggesting a path towards more adaptive and robust control across diverse machines and materials.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"99 \",\"pages\":\"Article 104641\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425000053\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000053","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
In-situ controller autotuning by Bayesian optimization for closed-loop feedback control of laser powder bed fusion process
Laser powder bed fusion (LPBF) additive manufacturing (AM) traditionally relies on static parameter assignment in an open loop, which can lead to defects when faced with complex thermal histories and process variability. Closed-loop control offers a promising alternative that can enhance stability and mitigate defects. However, controller performance relies heavily on precise parameter tuning, a process that is typically manual and system-specific. This study employs Bayesian Optimization (BO) as an automated, sample-efficient method for tuning in-layer controllers in LPBF, leveraging the repetitive nature of the process for either online (in-process) or offline (pre-process) tuning. We experimentally apply BO to tune an in-layer PI controller to modulate laser power, assessing its performance on wedge geometries prone to overheating. The results show that BO significantly reduces overheating, outperforming uncontrolled settings. Notably, this study presents the first microstructural analysis of parts produced with in-layer controlled tuning, identifying lack-of-fusion porosities caused by the controller’s corrective adjustments. In summary, BO demonstrates strong potential for automated controller tuning in LPBF, with implications for broader applications in AM, suggesting a path towards more adaptive and robust control across diverse machines and materials.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.