Fanrui Kong , Zixuan Wang , Chuchu Zhang , Yihua Xiao , Muhammad Abdul Rehman Saeed , Weini Li , Akira Goto , Qingshuang Cai , Shanming Ji
{"title":"果蝇Cul3参与diap2介导的抗微生物防御的先天免疫信号","authors":"Fanrui Kong , Zixuan Wang , Chuchu Zhang , Yihua Xiao , Muhammad Abdul Rehman Saeed , Weini Li , Akira Goto , Qingshuang Cai , Shanming Ji","doi":"10.1016/j.hlife.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>The host antimicrobial immune response relies on a complex interplay of molecular mechanisms to effectively combat microbial infections. Herein, we investigate the functional role of Cullin-3 (Cul3), one critical constituent of Cullin-RING ubiquitin ligases, in the <em>Drosophila melanogaster</em> (fruit fly) antimicrobial immune defense. We show that silencing of <em>Cul3</em> leads to a decreased induction of antimicrobial peptides and high mortality in adult flies after bacterial infection. Through biochemical approaches, we demonstrate that Cul3 predominantly relies on its BTB-binding domain and neddylation domain to physically associate with death-associated inhibitor of apoptosis 2 (Diap2). Importantly, Cul3 ameliorates the Diap2-mediated ubiquitination of death-related ced-3/Nedd2-like caspase (Dredd), a process essential for robust immune deficiency signaling upon bacterial infection. Taken together, our findings highlight a previously unrecognized regulatory axis of Cul3/Diap2/Dredd in the fly antimicrobial immune defense, providing potential insights into therapeutic strategies for combating bacterial infections in humans.</div></div>","PeriodicalId":100609,"journal":{"name":"hLife","volume":"3 1","pages":"Pages 38-51"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drosophila Cul3 contributes to Diap2-mediated innate immune signaling for antimicrobial defense\",\"authors\":\"Fanrui Kong , Zixuan Wang , Chuchu Zhang , Yihua Xiao , Muhammad Abdul Rehman Saeed , Weini Li , Akira Goto , Qingshuang Cai , Shanming Ji\",\"doi\":\"10.1016/j.hlife.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The host antimicrobial immune response relies on a complex interplay of molecular mechanisms to effectively combat microbial infections. Herein, we investigate the functional role of Cullin-3 (Cul3), one critical constituent of Cullin-RING ubiquitin ligases, in the <em>Drosophila melanogaster</em> (fruit fly) antimicrobial immune defense. We show that silencing of <em>Cul3</em> leads to a decreased induction of antimicrobial peptides and high mortality in adult flies after bacterial infection. Through biochemical approaches, we demonstrate that Cul3 predominantly relies on its BTB-binding domain and neddylation domain to physically associate with death-associated inhibitor of apoptosis 2 (Diap2). Importantly, Cul3 ameliorates the Diap2-mediated ubiquitination of death-related ced-3/Nedd2-like caspase (Dredd), a process essential for robust immune deficiency signaling upon bacterial infection. Taken together, our findings highlight a previously unrecognized regulatory axis of Cul3/Diap2/Dredd in the fly antimicrobial immune defense, providing potential insights into therapeutic strategies for combating bacterial infections in humans.</div></div>\",\"PeriodicalId\":100609,\"journal\":{\"name\":\"hLife\",\"volume\":\"3 1\",\"pages\":\"Pages 38-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"hLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949928324000841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"hLife","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949928324000841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Drosophila Cul3 contributes to Diap2-mediated innate immune signaling for antimicrobial defense
The host antimicrobial immune response relies on a complex interplay of molecular mechanisms to effectively combat microbial infections. Herein, we investigate the functional role of Cullin-3 (Cul3), one critical constituent of Cullin-RING ubiquitin ligases, in the Drosophila melanogaster (fruit fly) antimicrobial immune defense. We show that silencing of Cul3 leads to a decreased induction of antimicrobial peptides and high mortality in adult flies after bacterial infection. Through biochemical approaches, we demonstrate that Cul3 predominantly relies on its BTB-binding domain and neddylation domain to physically associate with death-associated inhibitor of apoptosis 2 (Diap2). Importantly, Cul3 ameliorates the Diap2-mediated ubiquitination of death-related ced-3/Nedd2-like caspase (Dredd), a process essential for robust immune deficiency signaling upon bacterial infection. Taken together, our findings highlight a previously unrecognized regulatory axis of Cul3/Diap2/Dredd in the fly antimicrobial immune defense, providing potential insights into therapeutic strategies for combating bacterial infections in humans.