偶氮假单胞菌和恶臭假单胞菌:新型猕猴桃原生生物防治丁香假单胞菌。actinidiae

IF 3.7 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cristiana Correia , Antonio Cellini , Irene Donati , Panagiotis Voulgaris , Adebayo Ebenezer Obafemi , Elia Soriato , Elodie Vandelle , Conceição Santos , Francesco Spinelli
{"title":"偶氮假单胞菌和恶臭假单胞菌:新型猕猴桃原生生物防治丁香假单胞菌。actinidiae","authors":"Cristiana Correia ,&nbsp;Antonio Cellini ,&nbsp;Irene Donati ,&nbsp;Panagiotis Voulgaris ,&nbsp;Adebayo Ebenezer Obafemi ,&nbsp;Elia Soriato ,&nbsp;Elodie Vandelle ,&nbsp;Conceição Santos ,&nbsp;Francesco Spinelli","doi":"10.1016/j.biocontrol.2025.105706","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pseudomonas syringae</em> pv. <em>actinidiae</em> (Psa), the etiological agent of the bacterial canker in <em>Actinidia</em> plants, remains the main threat to kiwifruit orchards worldwide. Though <em>e</em>nvironment-friendly disease control methods based on biological control agents (BCAs) represent a promising alternative to xenobiotic pesticides, their efficacy in field conditions has often resulted erratic. The selection of beneficial microorganisms directly from the phyllosphere of the host plant is a promising approach to overcome this limitation since it ensures the adaptation of the isolates to the environment in which they are going to be applied. This work reports the screening of the kiwifruit epiphytic bacterial community from three Psa infected orchards in Portugal to identify potential bacterial BCAs capable of inhibiting Psa growth or interfering with its virulence. Strains of <em>Pseudomonas putida</em> and <em>Pseudomonas azotoformans</em> efficiently antagonized Psa on flowers and leaves and colonized all susceptible organs with high surviving rates in glasshouse conditions. <em>In vitro</em> metabolic analysis together with genome sequencing and annotation revealed siderophore production, in particular pyoverdine, which may limit iron availability to the pathogen. Moreover, several biosynthetic gene clusters of secondary metabolites, were predicted in the genome of both strains, including non-ribosomal peptides, and the bacteriocin pyocin was predicted in the genome of BG1. Overall, these results open new perspectives to develop commercial products for Psa management based on kiwifruit-native bacteria, well-adapted to common orchard management practices, with a high efficiency of host plant colonization, at Psa-conducive temperatures, and point out possible mechanisms of action for these two BCA candidates, supporting further steps to assess their effectiveness in orchard conditions.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"201 ","pages":"Article 105706"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudomonas azotoformans and Pseudomonas putida: Novel kiwifruit-native biological control agents against Pseudomonas syringae pv. actinidiae\",\"authors\":\"Cristiana Correia ,&nbsp;Antonio Cellini ,&nbsp;Irene Donati ,&nbsp;Panagiotis Voulgaris ,&nbsp;Adebayo Ebenezer Obafemi ,&nbsp;Elia Soriato ,&nbsp;Elodie Vandelle ,&nbsp;Conceição Santos ,&nbsp;Francesco Spinelli\",\"doi\":\"10.1016/j.biocontrol.2025.105706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Pseudomonas syringae</em> pv. <em>actinidiae</em> (Psa), the etiological agent of the bacterial canker in <em>Actinidia</em> plants, remains the main threat to kiwifruit orchards worldwide. Though <em>e</em>nvironment-friendly disease control methods based on biological control agents (BCAs) represent a promising alternative to xenobiotic pesticides, their efficacy in field conditions has often resulted erratic. The selection of beneficial microorganisms directly from the phyllosphere of the host plant is a promising approach to overcome this limitation since it ensures the adaptation of the isolates to the environment in which they are going to be applied. This work reports the screening of the kiwifruit epiphytic bacterial community from three Psa infected orchards in Portugal to identify potential bacterial BCAs capable of inhibiting Psa growth or interfering with its virulence. Strains of <em>Pseudomonas putida</em> and <em>Pseudomonas azotoformans</em> efficiently antagonized Psa on flowers and leaves and colonized all susceptible organs with high surviving rates in glasshouse conditions. <em>In vitro</em> metabolic analysis together with genome sequencing and annotation revealed siderophore production, in particular pyoverdine, which may limit iron availability to the pathogen. Moreover, several biosynthetic gene clusters of secondary metabolites, were predicted in the genome of both strains, including non-ribosomal peptides, and the bacteriocin pyocin was predicted in the genome of BG1. Overall, these results open new perspectives to develop commercial products for Psa management based on kiwifruit-native bacteria, well-adapted to common orchard management practices, with a high efficiency of host plant colonization, at Psa-conducive temperatures, and point out possible mechanisms of action for these two BCA candidates, supporting further steps to assess their effectiveness in orchard conditions.</div></div>\",\"PeriodicalId\":8880,\"journal\":{\"name\":\"Biological Control\",\"volume\":\"201 \",\"pages\":\"Article 105706\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Control\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049964425000167\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964425000167","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丁香假单胞菌。猕猴桃酸菌(actinidiae, Psa)是猕猴桃属植物细菌性溃疡病的病原,是世界范围内猕猴桃果园的主要威胁。虽然基于生物防治剂(bca)的环境友好型疾病防治方法是一种很有前途的替代外源农药的方法,但其在田间条件下的效果往往不稳定。直接从寄主植物的层层中选择有益微生物是克服这一限制的一种有希望的方法,因为它确保了分离物对它们将要应用的环境的适应。本文报道了对葡萄牙三个Psa感染果园的猕猴桃附生细菌群落的筛选,以确定能够抑制Psa生长或干扰其毒力的潜在细菌bca。恶臭假单胞菌和偶氮型假单胞菌能有效拮抗花和叶上的Psa,并在所有敏感器官上定植,在温室条件下具有较高的存活率。体外代谢分析、基因组测序和注释显示铁载体的产生,特别是吡啶,这可能限制铁对病原体的可利用性。此外,在这两个菌株的基因组中预测了几个次生代谢产物的生物合成基因簇,包括非核糖体肽,并在BG1的基因组中预测了细菌素pyocin。总的来说,这些结果为开发基于猕猴桃原生细菌的Psa管理商业产品开辟了新的视角,这些细菌很好地适应了常见的果园管理实践,在有利于Psa的温度下具有较高的寄主植物定殖效率,并指出了这两种BCA候选物的可能作用机制,支持进一步评估它们在果园条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudomonas azotoformans and Pseudomonas putida: Novel kiwifruit-native biological control agents against Pseudomonas syringae pv. actinidiae
Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of the bacterial canker in Actinidia plants, remains the main threat to kiwifruit orchards worldwide. Though environment-friendly disease control methods based on biological control agents (BCAs) represent a promising alternative to xenobiotic pesticides, their efficacy in field conditions has often resulted erratic. The selection of beneficial microorganisms directly from the phyllosphere of the host plant is a promising approach to overcome this limitation since it ensures the adaptation of the isolates to the environment in which they are going to be applied. This work reports the screening of the kiwifruit epiphytic bacterial community from three Psa infected orchards in Portugal to identify potential bacterial BCAs capable of inhibiting Psa growth or interfering with its virulence. Strains of Pseudomonas putida and Pseudomonas azotoformans efficiently antagonized Psa on flowers and leaves and colonized all susceptible organs with high surviving rates in glasshouse conditions. In vitro metabolic analysis together with genome sequencing and annotation revealed siderophore production, in particular pyoverdine, which may limit iron availability to the pathogen. Moreover, several biosynthetic gene clusters of secondary metabolites, were predicted in the genome of both strains, including non-ribosomal peptides, and the bacteriocin pyocin was predicted in the genome of BG1. Overall, these results open new perspectives to develop commercial products for Psa management based on kiwifruit-native bacteria, well-adapted to common orchard management practices, with a high efficiency of host plant colonization, at Psa-conducive temperatures, and point out possible mechanisms of action for these two BCA candidates, supporting further steps to assess their effectiveness in orchard conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Control
Biological Control 生物-昆虫学
CiteScore
7.40
自引率
7.10%
发文量
220
审稿时长
63 days
期刊介绍: Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents. The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信