热应力微流控平台的设计以筛选药物配方中治疗性蛋白的稳定性

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
O. Bortone , S. Fiorenza , M. Baldassarre , N. Falco , M. Amidi , T. Markkula , P.A. Netti , E. Torino
{"title":"热应力微流控平台的设计以筛选药物配方中治疗性蛋白的稳定性","authors":"O. Bortone ,&nbsp;S. Fiorenza ,&nbsp;M. Baldassarre ,&nbsp;N. Falco ,&nbsp;M. Amidi ,&nbsp;T. Markkula ,&nbsp;P.A. Netti ,&nbsp;E. Torino","doi":"10.1016/j.crbiot.2025.100273","DOIUrl":null,"url":null,"abstract":"<div><div>Therapeutic proteins have great potentialities for the care of a wide spectrum of diseases, for which other small synthetic drugs result ineffective. Due to challenges related to their immunogenicity, the journey of biologics into clinics still faces obstacles. Among the causes of protein immunogenicity, their natural propensity to aggregation is crucial, indeed, to study their stability, pharmaceutical formulations are generally exposed to diverse environmental physicochemical conditions. Traditional approaches to explore protein behavior are effort-demanding, lengthy and expensive, resulting in a limited knowledge of biomolecule stability. There is an urgent need to develop faster and more cost-effective technologies for biological formulation development. In this work, the conceptualization, design and implementation of a modular and automated microfluidic platform to provide thermal stress to highly concentrated and viscous pharmaceutical formulations is presented. The microfluidic platform validity in terms of reliability and comparability to a forced degradation batch-wise stimulation is demonstrated by thermally stimulating and analyzing through SE-HPLC (Size Exclusion – High Performance Liquid Chromatography) different high concentration (&gt; 100 mg/ml) therapeutic nanobody-based formulations. Remarkably, the ranking of the formulations returned by the microfluidic thermal stress platform follows the same trend obtained through well-established industrial in-batch stimulations. Furthermore, data coming from microfluidic stimulations well correlates to outcomes coming from industrial methodologies for storage and accelerated stability studies.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100273"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations\",\"authors\":\"O. Bortone ,&nbsp;S. Fiorenza ,&nbsp;M. Baldassarre ,&nbsp;N. Falco ,&nbsp;M. Amidi ,&nbsp;T. Markkula ,&nbsp;P.A. Netti ,&nbsp;E. Torino\",\"doi\":\"10.1016/j.crbiot.2025.100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Therapeutic proteins have great potentialities for the care of a wide spectrum of diseases, for which other small synthetic drugs result ineffective. Due to challenges related to their immunogenicity, the journey of biologics into clinics still faces obstacles. Among the causes of protein immunogenicity, their natural propensity to aggregation is crucial, indeed, to study their stability, pharmaceutical formulations are generally exposed to diverse environmental physicochemical conditions. Traditional approaches to explore protein behavior are effort-demanding, lengthy and expensive, resulting in a limited knowledge of biomolecule stability. There is an urgent need to develop faster and more cost-effective technologies for biological formulation development. In this work, the conceptualization, design and implementation of a modular and automated microfluidic platform to provide thermal stress to highly concentrated and viscous pharmaceutical formulations is presented. The microfluidic platform validity in terms of reliability and comparability to a forced degradation batch-wise stimulation is demonstrated by thermally stimulating and analyzing through SE-HPLC (Size Exclusion – High Performance Liquid Chromatography) different high concentration (&gt; 100 mg/ml) therapeutic nanobody-based formulations. Remarkably, the ranking of the formulations returned by the microfluidic thermal stress platform follows the same trend obtained through well-established industrial in-batch stimulations. Furthermore, data coming from microfluidic stimulations well correlates to outcomes coming from industrial methodologies for storage and accelerated stability studies.</div></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":\"9 \",\"pages\":\"Article 100273\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262825000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262825000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

治疗性蛋白质在治疗广泛的疾病方面具有巨大的潜力,其他小合成药物对这些疾病无效。由于与免疫原性相关的挑战,生物制剂进入临床的旅程仍然面临障碍。在蛋白质免疫原性的原因中,它们的自然聚集倾向是至关重要的,事实上,为了研究它们的稳定性,药物配方通常暴露在不同的环境物理化学条件下。探索蛋白质行为的传统方法是费力的、漫长的和昂贵的,导致生物分子稳定性的知识有限。迫切需要开发更快、更具成本效益的生物制剂开发技术。在这项工作中,提出了一个模块化和自动化的微流控平台的概念,设计和实现,以提供高浓度和粘性药物配方的热应力。通过热刺激和SE-HPLC(尺寸排除-高效液相色谱)分析不同浓度(>;100毫克/毫升)治疗性纳米体制剂。值得注意的是,微流控热应力平台返回的配方排名遵循通过成熟的工业批量模拟获得的趋势。此外,来自微流体刺激的数据与来自存储和加速稳定性研究的工业方法的结果密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations

Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations
Therapeutic proteins have great potentialities for the care of a wide spectrum of diseases, for which other small synthetic drugs result ineffective. Due to challenges related to their immunogenicity, the journey of biologics into clinics still faces obstacles. Among the causes of protein immunogenicity, their natural propensity to aggregation is crucial, indeed, to study their stability, pharmaceutical formulations are generally exposed to diverse environmental physicochemical conditions. Traditional approaches to explore protein behavior are effort-demanding, lengthy and expensive, resulting in a limited knowledge of biomolecule stability. There is an urgent need to develop faster and more cost-effective technologies for biological formulation development. In this work, the conceptualization, design and implementation of a modular and automated microfluidic platform to provide thermal stress to highly concentrated and viscous pharmaceutical formulations is presented. The microfluidic platform validity in terms of reliability and comparability to a forced degradation batch-wise stimulation is demonstrated by thermally stimulating and analyzing through SE-HPLC (Size Exclusion – High Performance Liquid Chromatography) different high concentration (> 100 mg/ml) therapeutic nanobody-based formulations. Remarkably, the ranking of the formulations returned by the microfluidic thermal stress platform follows the same trend obtained through well-established industrial in-batch stimulations. Furthermore, data coming from microfluidic stimulations well correlates to outcomes coming from industrial methodologies for storage and accelerated stability studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信