论禁止诱导森林的有向图英雄

IF 1 3区 数学 Q1 MATHEMATICS
Alvaro Carbonero , Hidde Koerts , Benjamin Moore , Sophie Spirkl
{"title":"论禁止诱导森林的有向图英雄","authors":"Alvaro Carbonero ,&nbsp;Hidde Koerts ,&nbsp;Benjamin Moore ,&nbsp;Sophie Spirkl","doi":"10.1016/j.ejc.2024.104104","DOIUrl":null,"url":null,"abstract":"<div><div>We continue a line of research which studies which hereditary families of digraphs have bounded dichromatic number. For a class of digraphs <span><math><mi>C</mi></math></span>, a hero in <span><math><mi>C</mi></math></span> is any digraph <span><math><mi>H</mi></math></span> such that <span><math><mi>H</mi></math></span>-free digraphs in <span><math><mi>C</mi></math></span> have bounded dichromatic number. We show that if <span><math><mi>F</mi></math></span> is an oriented star of degree at least five, the only heroes for the class of <span><math><mi>F</mi></math></span>-free digraphs are transitive tournaments. For oriented stars <span><math><mi>F</mi></math></span> of degree exactly four, we show the only heroes in <span><math><mi>F</mi></math></span>-free digraphs are transitive tournaments, or possibly special joins of transitive tournaments. Aboulker et al. characterized the set of heroes of <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>→</mo></mover><mo>}</mo></mrow></math></span>-free digraphs almost completely, and we show the same characterization for the class of <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>→</mo></mover><mo>}</mo></mrow></math></span>-free digraphs. Lastly, we show that if we forbid two “valid” orientations of brooms, then every transitive tournament is a hero for this class of digraphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104104"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On heroes in digraphs with forbidden induced forests\",\"authors\":\"Alvaro Carbonero ,&nbsp;Hidde Koerts ,&nbsp;Benjamin Moore ,&nbsp;Sophie Spirkl\",\"doi\":\"10.1016/j.ejc.2024.104104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We continue a line of research which studies which hereditary families of digraphs have bounded dichromatic number. For a class of digraphs <span><math><mi>C</mi></math></span>, a hero in <span><math><mi>C</mi></math></span> is any digraph <span><math><mi>H</mi></math></span> such that <span><math><mi>H</mi></math></span>-free digraphs in <span><math><mi>C</mi></math></span> have bounded dichromatic number. We show that if <span><math><mi>F</mi></math></span> is an oriented star of degree at least five, the only heroes for the class of <span><math><mi>F</mi></math></span>-free digraphs are transitive tournaments. For oriented stars <span><math><mi>F</mi></math></span> of degree exactly four, we show the only heroes in <span><math><mi>F</mi></math></span>-free digraphs are transitive tournaments, or possibly special joins of transitive tournaments. Aboulker et al. characterized the set of heroes of <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>→</mo></mover><mo>}</mo></mrow></math></span>-free digraphs almost completely, and we show the same characterization for the class of <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>→</mo></mover><mo>}</mo></mrow></math></span>-free digraphs. Lastly, we show that if we forbid two “valid” orientations of brooms, then every transitive tournament is a hero for this class of digraphs.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"125 \",\"pages\":\"Article 104104\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001896\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001896","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们继续研究有向图的哪些遗传家族具有有界二色数。对于一类有向图C, C中的英雄是任意有向图H,使得C中无H的有向图有二色数有界。我们证明了如果F是至少5度的有向星,那么无F有向图类的唯一英雄是传递竞赛。对于四度定向星F,我们证明了在无F有向图中唯一的英雄是传递竞赛,或者可能是传递竞赛的特殊连接。Aboulker等人几乎完全刻画了{H,K1+P2→}自由有向图的英雄集,我们对{H,rK1+P3→}自由有向图类也给出了相同的刻画。最后,我们证明了如果我们禁止扫帚的两个“有效”方向,那么对于这类有向图,每个传递比武都是英雄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On heroes in digraphs with forbidden induced forests
We continue a line of research which studies which hereditary families of digraphs have bounded dichromatic number. For a class of digraphs C, a hero in C is any digraph H such that H-free digraphs in C have bounded dichromatic number. We show that if F is an oriented star of degree at least five, the only heroes for the class of F-free digraphs are transitive tournaments. For oriented stars F of degree exactly four, we show the only heroes in F-free digraphs are transitive tournaments, or possibly special joins of transitive tournaments. Aboulker et al. characterized the set of heroes of {H,K1+P2}-free digraphs almost completely, and we show the same characterization for the class of {H,rK1+P3}-free digraphs. Lastly, we show that if we forbid two “valid” orientations of brooms, then every transitive tournament is a hero for this class of digraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信