通过循环伏安法加强对磁铁矿纳米颗粒电合成的控制

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY
Lucero I. Ledesma-Fosados , Nohra V. Gallardo-Rivas , Ulises Páramo-García , Ricardo García-Alamilla , José de J. Pérez-Bueno , Ana M. Mendoza-Martínez
{"title":"通过循环伏安法加强对磁铁矿纳米颗粒电合成的控制","authors":"Lucero I. Ledesma-Fosados ,&nbsp;Nohra V. Gallardo-Rivas ,&nbsp;Ulises Páramo-García ,&nbsp;Ricardo García-Alamilla ,&nbsp;José de J. Pérez-Bueno ,&nbsp;Ana M. Mendoza-Martínez","doi":"10.1016/j.ijoes.2025.100956","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we report the electrosynthesis of magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles using cyclic voltammetry with a carbon steel sacrificial anode in NaCl solutions. The study explored scan rates between 1 and 20 mV/s in NaCl concentrations of 0.01 M and 0.1 M. Comprehensive characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) revealed that the slower scan rates and higher electrolyte concentrations promoted the formation of well-crystallized magnetite. At higher scan rates and lower NaCl concentrations, intermediate iron oxide phases such as goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) were observed. The smallest crystallite size (18 nm) was obtained at 1 mV/s in 0.1 M NaCl, confirming that lower scan rates favor smaller and more uniform nanoparticles. This work highlights the influence of scan rate and electrolyte concentration on nanoparticle size, phase purity, and morphology, offering insights into controlling these parameters for optimized synthesis. The findings have significant implications for environmental applications such as water remediation and energy storage technologies.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 4","pages":"Article 100956"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced control of magnetite nanoparticle electrosynthesis through cyclic voltammetry\",\"authors\":\"Lucero I. Ledesma-Fosados ,&nbsp;Nohra V. Gallardo-Rivas ,&nbsp;Ulises Páramo-García ,&nbsp;Ricardo García-Alamilla ,&nbsp;José de J. Pérez-Bueno ,&nbsp;Ana M. Mendoza-Martínez\",\"doi\":\"10.1016/j.ijoes.2025.100956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we report the electrosynthesis of magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles using cyclic voltammetry with a carbon steel sacrificial anode in NaCl solutions. The study explored scan rates between 1 and 20 mV/s in NaCl concentrations of 0.01 M and 0.1 M. Comprehensive characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) revealed that the slower scan rates and higher electrolyte concentrations promoted the formation of well-crystallized magnetite. At higher scan rates and lower NaCl concentrations, intermediate iron oxide phases such as goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) were observed. The smallest crystallite size (18 nm) was obtained at 1 mV/s in 0.1 M NaCl, confirming that lower scan rates favor smaller and more uniform nanoparticles. This work highlights the influence of scan rate and electrolyte concentration on nanoparticle size, phase purity, and morphology, offering insights into controlling these parameters for optimized synthesis. The findings have significant implications for environmental applications such as water remediation and energy storage technologies.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"20 4\",\"pages\":\"Article 100956\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398125000318\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000318","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们报道了在NaCl溶液中使用碳钢牺牲阳极,利用循环伏安法电合成磁铁矿(Fe3O4)纳米颗粒。在NaCl浓度为0.01 M和0.1 M时,扫描速率为1 ~ 20 mV/s。利用傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、x射线衍射(XRD)和动态光散射(DLS)进行综合表征表明,较慢的扫描速率和较高的电解质浓度促进了磁铁矿良好结晶的形成。在较高的扫描速率和较低的NaCl浓度下,观察到中间氧化铁相,如针铁矿(α-FeOOH)和绢云母(γ-FeOOH)。在0.1 M NaCl中,以1 mV/s的扫描速率获得了最小的晶体尺寸(18 nm),证实了较低的扫描速率有利于更小、更均匀的纳米颗粒。这项工作强调了扫描速率和电解质浓度对纳米颗粒尺寸、相纯度和形貌的影响,为优化合成提供了控制这些参数的见解。这一发现对水修复和能源储存技术等环境应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced control of magnetite nanoparticle electrosynthesis through cyclic voltammetry
In this work, we report the electrosynthesis of magnetite (Fe3O4) nanoparticles using cyclic voltammetry with a carbon steel sacrificial anode in NaCl solutions. The study explored scan rates between 1 and 20 mV/s in NaCl concentrations of 0.01 M and 0.1 M. Comprehensive characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) revealed that the slower scan rates and higher electrolyte concentrations promoted the formation of well-crystallized magnetite. At higher scan rates and lower NaCl concentrations, intermediate iron oxide phases such as goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) were observed. The smallest crystallite size (18 nm) was obtained at 1 mV/s in 0.1 M NaCl, confirming that lower scan rates favor smaller and more uniform nanoparticles. This work highlights the influence of scan rate and electrolyte concentration on nanoparticle size, phase purity, and morphology, offering insights into controlling these parameters for optimized synthesis. The findings have significant implications for environmental applications such as water remediation and energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信